
CDM.DEPAUL.EDU
 90 full time faculty
 300 courses/quarter
1858 graduate students in 20 programs (CS, IS, ...)
1763 undergraduate students in 16 programs
 DHS and NSA center of excellence

MASSIMO DI PIERRO
 PhD in Physics (Lattice Quantum Chromodynamics)
 “Director” MS in Computation Finance
 Interests: Numerical Algorithms, Web Development

Friday, July 5, 13

WEB DEVELOPMENT
WITH WEB2PY

Massimo Di Pierro

School of Computing and Digital Media

Chicago, IL

Friday, July 5, 13

my job is to make web development easy

Friday, July 5, 13

easy != dumbed down
easy != visual programming

easy => more intuitive / less error prone
easy => more expressive
easy => more powerful syntax

easy is not just for kids
easy means experienced developers can concentrate
on what is important: algorithms
easy means less development and maintenance costs

Disclaimer: I do not claim any success. I am just trying....

my job is to make web development easy

Friday, July 5, 13

web server DAL + database web IDE
ssl enabled SQLite design, deploy, manage

web2py

WE2PY: BATTERIES INCLUDED

No installation. No configuration. Just Unzip and Click!

.zip

html, xml, json, rss, ics, pdf, rtf,
xmlrpc, jsonrpc, soap,

ldap, pam, janrain, dropbox, google,
CAS, OpenID, oauth 1&2, x509

marmin, markdown,
google wallet, authorize.net, stripe.com

memcache, redis
twitter bootstrap

auto-migrations

Friday, July 5, 13

WEB2PY CONTRIBUTORS
2011

2012

Friday, July 5, 13

Ideas we borrowed
• Model View Controller on WSGI (like everybody

else)

• w2p files (like Java’s Web application ARchives)

• Routing mechanism (like Django, but optional like
Rails)

• Pure Python Template Language (like Mako)

• Helpers (like Rails) but easier: DIV, SPAN, A, ...

• web based database interface (like Django admin)

7

Friday, July 5, 13

Ideas we had ...

• Always backward compatible (since 2007, 2.5, 2.6, 2.7, pypy, jython)

• One click deploy (Windows and Mac binaries, USB drive)

• No configuration, no dependencies, and secure by default

• Everything has default (DRY)

• Multi project and multi db but share nothing by default

• Web based IDE (development, editor, deployment, management,
translations, testing, debugger, version control) shell optional

• Automatic DB migrations (CREATE and ALTER table)

• Plugins / Components / Ajax with Digitally Signed URLs

8

Friday, July 5, 13

... Ideas we had
• Role Based Access Control with pluggable authentication

modules (openid, dlap, cas, oauth pam, janrain, google,
dropbox)

• Every app is a Central Authentication Service consumer
and provider.

• Built-in portable cron and master/workers task scheduler

• Full Auditing for all tables

• Ajax embeddable crud & grid controls

9

Friday, July 5, 13

Web based IDE “admin” with hot plug and play of multiple apps

Friday, July 5, 13

Thin-IDE: only shows file system, no metadata

Friday, July 5, 13

Web based editor (code-mirror)

def index():
 return “hello world”

Friday, July 5, 13

Web based database administration (per app)
SQLite, MySQL, PotsgreSQL, MSSQL, Firebid, Oracle, DB2, Ingres, Informix, Ingres, Sybase, GAE, ...

Role Based Access Control Tables

Auth Actions

Twitter Bootstrap Layout

Scheduler Tables

Friday, July 5, 13

Web translation page for internationalization (per app)

Friday, July 5, 13

Built-in pluralization system

Friday, July 5, 13

Built-in ticketing system

Friday, July 5, 13

High level controls like the grid/smartgrid

Friday, July 5, 13

SYNTAX

public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello, World");
 }
}

print “hello world”

VS

KEEP NEW PROGRAMMERS IN MIND

Friday, July 5, 13

BOTTLE EXAMPLE
from bottle import run, route, get, static_file

@get('/index')
def index()
 return ‘hello world’

@route('/static/<filename>')
def server_static(filename):
 return static_file(filename, root='static')

run(host='localhost', port=8080)

required inputs

action

handler for static
files

start web server

routing logic

Friday, July 5, 13

FLASK EXAMPLE
from flask import Flask, request

app = Flask(__name__)
app.config.from_object(__name__)

@app.route('/index',methods=['GET'])
def index()
 return ‘hello world’

app.run(port=8080)

required inputs

boilerplate config
logic

action

routing logic

start web server

Friday, July 5, 13

TORNADO EXAMPLE
import tornado.ioloop
import tornado.web

def index(request):
 return ‘hello world’

class MainHandler(tornado.web.RequestHandler):
 def get(self): return index(self.request)

application = tornado.web.Application([
 (r"/index", MainHandler),
 (r"/static/(.*)",tornado.web.StaticFileHandler,{"path": "static"})])

application.listen(8080)
tornado.ioloop.IOLoop.instance().start() start web server

required inputs

action

routing logic

handler for static
files

Friday, July 5, 13

http://web.RequestHandler
http://web.RequestHandler
http://web.Application
http://web.Application
http://web.StaticFileHandler
http://web.StaticFileHandler

PYRAMID EXAMPLE
from wsgiref.simple_server import make_server
from pyramid.config import Configurator
from pyramid.response import Response
from pyramid.static import static_view

def index(context, request):
 return Response(‘hello world’)

config = Configurator()
config.add_route('index', '/index')
config.add_view(index, route_name='index')
config.add_static_view(name='static', path='static')
app = config.make_wsgi_app()
server = make_server('0.0.0.0', 8080, app)
server.serve_forever()

required inputs

action

routing logic

handler for static
files

start web server

Friday, July 5, 13

WEB2PY EXAMPLE

def index():
 return ‘hello world’ action

http://127.0.0.1:8000/appname/default/index

call

Friday, July 5, 13

http://127.0.0.1:8000/appname/default/index
http://127.0.0.1:8000/appname/default/index

IMPORT VS EXEC
user app

imports

framework

framework

executes

user app

Friday, July 5, 13

user app

imports

framework

framework

executes

user app ... app ... app

from bottle import ...
from flask import ...
from tornado import ...
from pyramid import ...

env = build_environment(request)
app = find_application(request)
exec app in env

explicit better
than implicit

do not repeat
yourself

convention over
configuration

(oversimplification)

IMPORT VS EXEC

Friday, July 5, 13

user app

imports

framework

framework

executes

user app ... app ... app

faster (for simple apps)
more flexibility
no “magic”

less code (for simple apps)
how swap of code
multi app/multi project
homogeneous environment
“magic”

IMPORT VS EXEC

Friday, July 5, 13

LAYERS OF CODE

<div>{{if x}}check{{endif}}</div>

execute(‘select * from users where id=1’)

<div><script>alert(‘hi!’)</script></div>

SQL inside Python

CODE in HTML

JS in HTML

return ‘<div><h1>%s</h1></div>’ % xHTML inside CODE

db(db.users.id==1).select()

return DIV(H1(x))

<div>{{if x:}}check{{pass}}</div>

<div>{{=LOAD(‘action’,ajax=True)}}</div>

(MVC)

(DAL or ORM)

(helpers)

Friday, July 5, 13

WEB2PY DAL

db = DAL(‘postgresql:...’, pool_size=10)
db.define_table(‘person’,Field(‘name’))
db.define_table(‘thing’,Field(‘name’),Field(‘owner’,db.person))
db.thing.insert(name=‘PC’, owner=db.person.insert(name=‘John’))

ownership = (db.person.id == db. thing.owner)
thing_counter = db.thing.id.count()
rows = db(ownership).select(db.person.name, thing_counter,
 groupby= db. person.id)

for row in rows: print row.person.name, row(thing_counter)

 SQLite, MySQL, PotsgreSQL, MSSQL, Firebid, Oracle, DB2, Ingres,
Informix, Ingres, Sybase, GAE, ...
 automatic migrations
 multiple dbs, connection pooling, Round Robin redundancy,

distributed transactions
 joins, left joins, aggregates, nested selects, recursive selects

Friday, July 5, 13

PROGRAMMING AS WIKI

models/db.py
db.define_table('thing',
 Field('name'),
 Field('info','test'))

controllers/default.py
def index():
 return auth.wiki()

def things():
 return SQLFORM.grid(db.thing)

Friday, July 5, 13

PROGRAMMING AS WIKI

Friday, July 5, 13

CONCLUSIONS

 We need to build a society where people understand and control
technology, not vice versa.
 We need to build tools that are easy to use to allow more people

to use technology for the public good
 web2py is one of such tools
 web2py reduces entry barrier to web programming
 web2py reduces maintenance costs for large projects

Friday, July 5, 13

