
WEB APPLICATIONS ON PYTHON3
AND PYTHON2 WITH TURBOGEARS

Alessandro Molina
@__amol__

amol@turbogears.org

Who am I

● CTO @ Axant.it mostly Python company

(with some iOS and Android)

● TurboGears2 development team member

● MongoDB fan and Ming ODM contributor

● Skeptic developer always looking for a

better solution

What's going to come

● Side by Side Python2 and Python3

● TurboGears on both

● ObjectDispatch, serving our pages

● Template Engines

● Gearbox toolkit

● What Python2 has that Python3 doesn't:

authentication, widgets, i18n, admin

What you think your web app is

What your web app is for real

Some missing pieces

● Not all underlying pieces are available on

Python3, yet

● Know when you need to stick to Python2, it

will save you a lot of problems

● Think of moving to Python3 sooner than

later, it will save you a lot of problems

● Python3 is a better Python, for real!

Why TurboGears

● Full stack framework, most of the features

are builtin and available both on Py2 and

Py3

● Minimal mode, really fast and simple for

API servers and small apps

● Non opinionated, use your favourite

template engine or database

Multiple Python Environments

● pythonbrew: a Python installation manager

○ Might want to try pythonz, fork of pythonbrew

● Have your Python2.x and 3.x installations

side by side

● Start with Python3.2 at least, most libraries

have been ported only to python 3.2 and

newer.

Installing PythonBrew

● Download & Install Pythonbrew:

○ curl -kL http://xrl.us/pythonbrewinstall | bash

● Enabled it in your .bashrc

○ source $HOME/.pythonbrew/etc/bashrc

● List installed interpreters:

○ $ pythonbrew list

● Install Python 3.3

○ $ pythonbrew install 3.3.0

Setup Python2 environment

● Create an environment for your Python2

webapp:

○ $ virtualenv --distribute --no-site-packages py2

● Depending on your virtualenv version and

system --distribute and --no-site-

packages might be the default.

Our Python3 environment

● Switch to Python3

○ $ pythonbrew use Python-3.3.0

● Install virtualenv:

○ $ pip install virtualenv

● Create Python3 environment:

○ $ virtualenv py3

● Recover your standard Python:

○ $ pythonbrew off

Switch env not interpreter

● Work with Python2

○ $ source py2/bin/activate

● Work with Python3

○ $ source py3/bin/activate

● Quit current active environment

○ $ deactivate

Installing TurboGears2

● Enable Python3

○ $ source py3/bin/activate

● Install tg.devtools

○ $ pip install -f http://tg.gy/230 tg.devtools

● You should get TurboGears2-2.3.0b2

● Documentation

○ http://turbogears.readthedocs.org/en/tg2.3.0b2/

○ Don't forget version and trailing slash!

Out first Python3 app

● edit app.py

● TurboGears minimal mode, much like

microframeworks

from wsgiref.simple_server import make_server
from tg import expose, TGController, AppConfig

class RootController(TGController):
 @expose()
 def index(self):
 return "<h1>Hello World</h1>"

config = AppConfig(minimal=True, root_controller=RootController())

print("Serving on port 8080...")
httpd = make_server('', 8080, config.make_wsgi_app())
httpd.serve_forever()

Object Dispatch

● Routing happens on your controller

method names and parameters

● Regular expressions can get messy, never

write one anymore

○ unless your need it: tgext.routes

● Easy to get to the controller that handles

an url just by looking at the url

Object Dispatch
URL CONTROLLER

/index RootController.index

/ RootController.index

/blog/3 BlogEntryController.index
(post = 3)

/blog/update?post=3 BlogEntryController.update
(post = 3)

/about RootController.about

/more/1/2/3 RootController.more
(args[0]=1, args[1]=2, args[3]=3)

/more?data=5 RootController.more
(kw['data']=5)

class BlogEntryController
(BaseController):
 @expose()
 def index(self, post):
 return 'HI'

 @expose()
 def edit(self, post):
 return 'HI'

 @expose()
 def update(self, post):
 return 'HI'

class RootController(BaseController):
 blog = BlogEntryController()

 @expose()
 def index(self):
 return 'HI'

 @expose()
 def about(self):
 return 'HI'

 @expose()
 def more(self, *args, **kw):
 return 'HI'

Template Engine agnostic

● Doesn't enforce any template language

bound to your controllers

● Genshi, Jinja, Mako and Kajiki officially

supported

● Genshi is strongly suggested due to the

need of a lingua franca for puggable

applications

Templates out of the box

TYPE NAME URL

Markup + Streamed Genshi http://genshi.edgewall.org/

Text + Compiled Mako http://www.makotemplates.org/

Text + Compiled Jinja http://http://jinja.pocoo.org/

Markup + Compiled Kajiki http://kajiki.pythonisito.com/

Add a Template

● Install Genshi:

○ $ pip install genshi

● Register it as a renderer available to the

framework:

○ base_config.renderers = ['genshi']

● Expose it in controllers:

○ @expose('template.html')

Hello Template

from wsgiref.simple_server import make_server
from tg import expose, TGController, AppConfig

class RootController(TGController):
 @expose('index.html')
 def index(self):
 return dict()

config = AppConfig(minimal=True,
 root_controller=RootController())
config.renderers = ['genshi']

print("Serving on port 8080...")
httpd = make_server('', 8080, config.make_wsgi_app())
httpd.serve_forever()

<html xmlns="http://www.w5.org/1999/xhtml"
 xmlns:py="http://genshi.edgewall.org/">
 <head>
 <title>Hello World</title>
 </head>
 <body>
 <h1>Hello World</h1>
 </body>
</html>

● index should now expose index.html

template and return dict()

Hello $user

from wsgiref.simple_server import make_server
from tg import expose, TGController, AppConfig

class RootController(TGController):
 @expose('index.html')
 def index(self):
 return dict(user='World')

config = AppConfig(minimal=True,
 root_controller=RootController())
config.renderers = ['genshi']

print("Serving on port 8080...")
httpd = make_server('', 8080, config.make_wsgi_app())
httpd.serve_forever()

<html xmlns="http://www.w5.org/1999/xhtml"
 xmlns:py="http://genshi.edgewall.org/">
 <head>
 <title>Hello World</title>
 </head>
 <body>
 <h1>Hello ${user}</h1>
 </body>
</html>

● Every entry in the returned dictionary will

be available inside the exposed template

as a variable

from request import data

from wsgiref.simple_server import make_server
from tg import expose, TGController, AppConfig

class RootController(TGController):
 @expose('index.html')
 def index(self, user='World', **kw):
 return dict(user=user)

config = AppConfig(minimal=True, root_controller=RootController())
config.renderers = ['genshi']

print("Serving on port 8080...")
httpd = make_server('', 8080, config.make_wsgi_app())
httpd.serve_forever()

● All arguments available in your URL will be

passed as method parameters

Going Full Stack

● TurboGears minimal

mode provides a quick

way to be productive.

● Full stack mode

provides an already

configured environment

and more features

What is Full Stack

● ORM and Transaction Manager

● Authentication and Identification

● Interactive Debugger and Error Reporting

● PasteDeploy compatible configuration

● Static Files

● Session and Caching

● Widgets and Admin (on Python2)

Creating a Full Stack application

● Full stack applications are created through

the gearbox toolkit

○ $ gearbox quickstart --skip-tw myapp

○ --skip-tw is required due to forms generation

library not being available on Python3 yet.

● Full stack applications are packages: can

be installed and updated to deploy

What's inside

Install the quickstarted app

● To use the app you need to install it:

○ $ pip install -e .

● Installing also brings in dependencies the

app requires

● Now run your application

○ $ gearbox serve --reload

A lot is there now

● Point your browser to http://localhost:

8080 and see TurboGears in action

● Quite a lot is there now!

● Have a look around

● App pages explain the app

itself

Authentication

● Click the login link in the upper-right

corner

○ username: manager

○ password: managepass

● Crash!

● Database has not been initialized

○ You now know what the interactive debugger

looks like!

Authentication, #2 try

● Create database and basic entities

○ $ gearbox setup-app

○ By default sqlite: devdata.db

● Click the login link in the upper-right

corner

○ username: manager

○ password: managepass

● Woah! Welcome back manager!

Authorization

● Go to http://localhost:8080/secc

○ Secure controller here

● Logout

● Go to http://localhost:8080/secc

○ Only for people with "manage" permission

Users and Permissions

● Default users are created in the application

setup script (setup-app)

○ Have a look at websetup/bootstrap.py

● Default models are provided by the

quickstart command for User, Group and

Permission

○ Have a look at models/auth.py

Predicates and Authorization

● Turbogears checks for authorization

requiring predicates bound to controllers

or methods

● http://turbogears.readthedocs.

org/en/tg2.3.0

b2/turbogears/authorization.html

@expose('prova.templates.index')
@require(predicates.has_permission('manage', msg=l_('Only for
managers')))
def manage_permission_only(self, **kw):
 """Illustrate how a page for managers only works."""
 return dict(page='managers stuff')

Database

Accessing Models

● TurboGears relies on SQLAlchemy for SQL

based databases and on Ming for

MongoDB databases

○ Both are first citizens of the TurboGears Admin

○ Both are supported out of the box

○ Run quickstart --ming to have MongoDB support

○ Run quickstart --nosa to disable database at all

○ gearbox help quickstart

Accessing Models

● TurboGears relies on SQLAlchemy for SQL

based databases and on Ming for

MongoDB databases

○ Both are first citizens of the TurboGears Admin

○ Both are supported out of the box

○ Run quickstart --ming to have MongoDB support

○ Run quickstart --nosa to disable database at all

○ gearbox help quickstart

Create, Read, Update, Delete

● Create

○ DBSession.add(Page(name='index'))

● Read

○ page = DBSession.query(Page).filter_by(name='index').one()

● Update

○ page.data = 'This is an empty page'

● Delete

○ DBSession.delete(page)

Wiki20 Tutorial

● TurboGears documentation provides a

great Wiki in 20 minutes Tutorial

○ http://turbogears.readthedocs.org/en/tg2.3.0

b2/turbogears/wiki20.html#wiki-model

● Just skip up to the Wiki Model section, we

already know the previous parts

Let's play with it!

Python3 no more

Back to Python2

● This is as far as you can get using Python3

● Some features not available there

○ i18n utilities

○ Widgets

○ MongoDB

○ TurboGears Admin

Moving to Widgets and Forms

● Doing forms is a tedious task

● Validating data users write is a mess

● Let's use widgets and forms

○ Generates HTML for us

○ Validates input

○ Keeps track of values in case of errors

○ Reports errors to users

Enable forms

● Switch back to Python2

○ $ source py2/bin/activate

● Enable forms in your project

○ edit config/app_cfg.py

○ base_config.use_toscawidgets2 = True

● Install

○ Add tw2.forms to setup.py install_requires

○ pip install -e .

Writing Widgets and Validation

from tg import validate
import tw2.core as twc
import tw2.forms as twf

class PageForm(twf.TableForm):
 pagename = twf.HiddenField(validator=twc.Validator(required=True))
 data = twf.TextArea(validator=twc.Validator(required=True))

 action = lurl('/save')

class RootController(BaseController):
 @expose()
 @validate(PageForm, error_handler=edit)
 def save(self, pagename, data):
 page = DBSession.query(Page).filter_by(pagename=pagename).one()
 page.data = data
 flash("Page successfully updated!")
 return redirect("/" + pagename)

Let's translate

● TurboGears detects language of the user

and translates text in templates and

controllers accordigly

● Translation itself is available on both

Python2 and Python3

● String collection is only available on

Python2

Collect text

● Install Babel

○ $ pip install babel

● Template content is automatically

collected and translated

● Text in controllers must be wrapped with

l_() or _() to make them translatable

● Wrap your flash messages

Perform collection

● Walkthrough on i18n

○ http://turbogears.readthedocs.org/en/tg2.3.0

b2/turbogears/i18n.html

● Utility commands

○ python setup.py extract_messages

○ python setup.py init_catalog -l it

○ poedit i18n/it/LC_MESSAGES/myproj.po

○ python setup.py compile_catalog

TurboGears Admin

● A lot of effort has been spent in

○ writing forms

○ validating data

○ editing pages

● Still a lot to do

○ How do I delete a page?

○ How do I search for a page?

Admin does that for you

Enabling the Admin

● Automatically done if you quickstarted

without --skip-tw option

● Enable manually as we started on Py3

○ $ pip install tgext.admin

○ Add admin controller

from tgext.admin.tgadminconfig import TGAdminConfig
from tgext.admin.controller import AdminController

class RootController(BaseController):
 admin = AdminController(model, DBSession, config_type=TGAdminConfig)

Rapid Prototyping

● TurboGears admin is based on tgext.crud,

a powerfull rapid prototyping tool

● Have a look at the admin tutorial

○ http://turbogears.readthedocs.org/en/tg2.3.0

b2/turbogears/wikier/index.html

● Avoid pushing the admin too far

○ Custom solutions are cleaner than a too much

customized admin

Admin is great for REST

● REST api for free

● For real, try to put .json after your pages list

○ /admin/pages.json

● Supports a full featured REST api

○ Meaningful error codes

○ Conditional PUT

● You might want to use tgext.crud directly

to build rest services

Look for ready made plugins

● tgext.pluggable enables pluggable

applications

● The cogbin is a collection of existing

extensions and pluggable apps

○ http://turbogears.org/cogbin.html

● Features like Facebook auth, blogging,

registration and so on available on cogbin

The DebugBar

● Great plugin available is the DebugBar

○ pip install tgext.pluggable

○ pip install tgext.debugbar

● Enable debugbar

○ config/app_cfg.py

○ from tgext.pluggable import plug

○ plug(base_config, 'tgext.debugbar')

DebugBar in action

Going Mongo with Ming

Want to support MongoDB

● Try passing --ming to gearbox quickstart

● Full featured admin and tgext.crud as on

SQLAlchemy

● Ming ODM has similar syntax

● Ming provides Unit of Work pattern like

SQLAlchemy

○ transaction manager missing, pay attention

Want to support MongoDB

● Full featured admin and tgext.crud as on

SQLAlchemy

● DebugBar works also with Ming

○ now with cool hightlighting of map-reduce

javascript code too!

Questions?

