Using Python in Software for the Medical Industry

Vertebral Fracture Analysis case study

EuroPython/PyCon IT
Firenze, IT
2011 Jun 21

Wesley J. Chun – @wescpy CyberWeb Consulting
wescpy@gmail.com http://cyberwebconsulting.com

About the Speaker

– Software engineer by profession
 • Currently at Google (cloud products)
– Course instructor: teaching Python since 1998
 • Private Corporate Training & Public Courses
– Community volunteer
 • User groups: BayPIGgies and SF Python Meetup
 • Other: Tutor mailing list; Python conferences
– Author/co-author (books, articles, blog, etc.)
 • Core Python Programming ([2009,]2007, 2001)
 • Python Fundamentals LiveLessons DVD (2009)
 • Python Web Development with Django (2009)
I Teach

I Write
About this Talk

- Yes, this talk still has some Python in it! 😊
 - Mostly an architectural talk

- This work took place during my tenure at Synarc from 2001-2004
 - Synarc founded in 1998 by merging 4 leading university-based + 2 commercial service providers (CROs)

- Internet and networking senior software engineer transplanted into medical field during dot-bomb era
 - Experience using Python to develop medical apps
 - Gained much medical knowledge and industry insight
 - Still like a fish-out-of-water experience
Synarc Company Services

- Applications for the following areas in medicine:
 - Oncology
 - Neurodegenerative Disease
 - Osteoporosis
 - Molecular Markers
 - Arthritis and Orthopaedics

- Services (clinical trials: multiple phases)
 - Preliminary
 - Image Procurement and Data Entry
 - Reading Analysis and Patient Assessment
 - Study Completion

Image Reading System Products

- Radiology image media accepted from sponsors
 - Radiographs (X-Rays)
 - Computer Tomography (CT) “cat scan”
 - Magnetic Resonance Imaging (MRI)

- Application Software
 - Vertebral fracture analysis
 - Knee Joint Space Width
 - Rheumatoid Arthritis

- Used by radiologists and trained technicians
Synarc Application Software

Rheumatoid Arthritis

Vertebral Fractures

Knee Joint Space Width

Process and Data Flow

Preliminary Data Entry Reading Analysis Data Txfr Support
Motivation/Goals

- Help bring new medicines to market faster
 - But ensure safety and follow FDA guidelines
 - Must publish standard operating procedures
 - (we get audited almost once a month)
- Enable more productivity
 - Empowers doctors and trained technicians
 - Provide suitable substitute for film and film labor
 - Strong attempts to reduce human error
- End users all internal (doctors/technicians)
- Turnaround time critical
 - Contracts were signed years ago
 - Now receiving radiology data (X-rays)

Focus on Vertebral Fractures

- Assess/diagnosing vertebral fractures
- What is a fracture?
 - Any damage to any bone structure
 - Usually some sort of breakage
 - Can also be loss of structure, i.e., see below
- What is a vertebra? A bone of your spine
 - 3 kinds: cervical (7), thoracic (12), lumbar (5)
 - In total, they make up the spinal or vertebral column
- Main cause of vertebral fractures is osteoporosis
What Are Vertebral Fractures?

- 3 basic types of vertebral fractures
 - Bioconcave (central vertebral deformity)
 - Wedge (mostly anterior/posterior)
 - Crush (all of the above)

- Symptoms
 - Initial severe pain
 - Gradually reduces
 - Wears on (intervertebral) disks
 - Can cause bone growth to form

Causes of Vertebral Fractures

- Most due to postmenopausal osteoporosis

- What is osteoporosis (porous bone)?
 - **def:** A systematic skeletal disease characterized by low bone mass and microarchitectural or structural deterioration of bone tissue, leading to bone fragility and increased susceptibility to fractures
 - 80% of those affected are female
 - 1:2 women and 1:8 men over age 50
 - 1.5 million osteoporotic fractures annually
 - Almost half are vertebral fractures
 - No “symptoms” of osteoporosis – nothing happens until fracture
 - No known cure, but many believe highly preventable
Vertebral Fractures: What Happens

Vertebral Fracture Analysis Software

- Software customized for each study
 - Keep application stable; customize stored procedures

- Vertebral Fracture system – graphical software app
 - Augments manual assessment via eye and paper
 - Simplifies measurement by radiographic morphometry
 - Expedites analysis of clinical testing of treatments
 - Geared towards vertebral fractures
 - Primary Input: X-Ray (digital image)

- Analysis Modes (4 separate tools):
 - Identification: label vertebrae
 - Assessment: SQ, BSQ, QM
Reading System

- Common
 - Used by all reading system applications
- Labeling
 - Vertebral identification
- Quantitative Morphometry
 - Measurement via vertebral shape and ratios
- Semi-Quantitative
 - Assign grading to fracture severity
- Binary Semi-Quantitative
 - Identifies fractures and new or worsened conditions

System Components

- Image source repository (CD jukebox or RAID)
- Labeling
- QM
- BSQ
- SQ
- Database
- Results
Common Software Components

- **Database Interface**
 - Low-level common interface to the DB

- **Data Manager**
 - Manages dataflow b/w applications and DB

- **Graphics Libraries**
 - XIL – high resolution graphics rendering
 - Should port to OpenXIL or better yet, OpenGL
 - Tk – high-level graphical user interface (GUI)
 - Don’t need complex widgets; just mouse-clicks!
 - Tkinter & Pmw – Python interface to Tk
 - Rapid development is a good thing

Labeling

- **Process of identifying vertebra**

- **Three (3) major components:**
 - LabelTool.sh (launches the main application)
 - LabelApplication.py (main application tool)
 - LabelTool.py (label tool for each radiograph)

- **Not considered assessment**
 - No electronic signature required
 - Can be performed by trained technician
Label Application Architecture

LabelTool (launcher Unix shell script)
LabelApplication (main Label tool application)

Database Interface
VFData Manager
Tk/XIL

Quantitative Morphometry

- Measuring the shape of each vertebra
- Calculating the intrabone ratios
 - Anterior / Medial / Posterior heights
- Three (3) major components:
 - QMTool.sh (launches the main application)
 - QMAplication.py (main application tool)
 - SixPoints.py (QM tool for each radiograph)
- Considered assessment
 - Electronic signature required
 - Can be performed by trained technician
QM Architecture

QM Tool (launcher Unix shell script)

QMAplication (main QM tool application)

SixPoints
SixPoints
SixPoints
SixPoints

Database Interface

VFData Manager

Tk/XIL

ElectronicSignatureGUI

Semi-Quantitative Scoring

- Grading of vertebral fractures
 - 0, 0.5, 1, 2, 3, N/A (cannot be determined/evaluated)
 - 0 = no/normal, 1 = mild, 2 = moderate, 3 = severe

- Three (3) major components:
 - SQTool.sh (launches the main application)
 - SQApplication.py (main application tool)
 - SQ.py (SQ tool for each radiograph)

- Considered assessment
 - Electronic signature required
 - Must be performed by radiologist
Binary Semi-Quantitative Scoring

- Identifying vertebral fractures and changes
 - 0, P, N/A (baseline); P = prevalent frx (preexisting)
 - 0, I, N/A (follow-up); I = incident frx (worsening)

- Three (3) major components:
 - BSQTool.sh (launches the main application)
 - BSQApplication.py (main application tool)
 - SQ.py (SQ tool for each radiograph)
 - Software nearly identical to code for SQ

- Considered assessment
 - Electronic signature required
 - Must be performed by radiologist
BSQ Architecture

<table>
<thead>
<tr>
<th>BSQTool (launcher Unix shell script)</th>
<th>BSQApplication (main SQ tool application)</th>
<th>Database Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQ</td>
<td>SQ</td>
<td>VFDData Manager</td>
</tr>
<tr>
<td>SQ</td>
<td>SQ</td>
<td>Tk/XIL</td>
</tr>
<tr>
<td>ElectronicSignatureGUI</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BSQ and BSQ

Quantitative Morphometry

Labeling
Data Flow

- Radiographs from sponsor
 - Film
- Graphic files from digitized radiographs
 - Lumisys, DICOM
- Images loaded from CD jukebox or RAID
- Labeling of radiograph image files
- QM, BSQ, and/or SQ of labeled images
- Data transfer back to sponsor

Software

- Python (primary development language)
 - Tk(inter), Pmw, and Sybase modules
- Other open source tools
 - Tcl, Tk, BLT; Perl, Apache, Samba, various GNU
- Some proprietary tools:
 - MS VB and Access
 - Sybase Transact SQL RDBMS
 - Sun Solaris and XIL high-res imaging library
Other System Components

- **Hardware**
 - Sun Microsystems Ultra 10
 - Single color visual monitor
 - Double high-resolution monochrome monitors

- **Operating System**
 - Sun Microsystems Solaris 8 (SunOS 2.8)

- **Data Entry System**
 - Assistants input incoming images, patient data
 - Data Entry screens in VB -> Access -> SYBS

Past, Current, Future

- **Why Python?**
 - Python chosen for rapid development time
 - Original engineer had 4 months to do it all
 - I rearchitected major pieces, added new features,…

- **80% of all Synarc applications in Python**
 - Vertebral Fracture, Joint Space Width
 - Various imaging tools, digitizer, etc.
 - Rheumatoid Arthritis (older app in Tcl/Tk)

- **Today: state is not as good**
 - A Java-centric came in a forced a rewrite of all tools
 - That was 2004. In 2011, those tools just rolling out
 - Yet original Python tools have been yielding $$
Online Resources

- Synarc
 - http://www.synarc.com
- University of California, San Francisco
 - Department of Radiology / Osteoporosis-Arthritis Research Group
 - http://www.oarg.ucsf.edu
- National Osteoporosis Foundation
 - http://www.nof.org
- The Type and Effect of Vertebral Fractures
 - http://www.osteoporosis-centre.org/oc_vfrac.htm
- Osteoporosis Centre
 - http://www.osteoporosis-centre.org
- Papers in related areas (software & medical)

Conclusion

- **Python Advantage**
 - Not locked to any particular vendor
 - Variety of development tools – your choice!
 - Ability to deliver mission-critical products
 - Extremely rapid development time
 - High importance given industry timelines

- **And now for something completely different!**
 - Medical software for doctors
 - Perform patient assessments on X-Rays
Recent Upcoming Events

- **Oct 18-20**: Intro+Inter. Python course, San Francisco
 • http://cyberwebconsulting.com
- **Jul 25-29**: O'Reilly Open Source (OSCON), Portland
 • http://oscon.com
- **Jul 11-13**: ACM CSTA CS&IT Conference, NYC
 • http://www.csitsymposium.org
- **Jun 20-25**: EuroPython, Florence
 • http://europython.eu
- **May 8-10**: Google I/O, San Francisco
 • http://google.com/io