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TORNADO



  

what is it?

Non-blocking web server
Based on epoll / kqueue

Handles 1000s of connections
Powers FriendFeed



  



  

why do you even care?

Know what you use

I can't trust
what I don't know

Learning and sharing: fun!



  

what do you use it for?

We built a
Scalable
Distributed
Fault tolerant
High load

...thing



  

[CITATION NEEDED]



  

oscar.vilaplana@paylogic.eu



  

TORNADO



  

what is it made of?

IOLoop
Callbacks, Tasks, Timeouts

TCPServer
Application

RequestHandler
Generators



  

can I extend it?

Sure!
It's easy

How would we make
a simple TCPServer?



  

0b_tcpserver.py

show me the source!

file:///t/0b_tcpserver.py


  

GETTING 

STARTED



  

how do I make the simplest app?

Define a RequestHand ler
Implement get

Define an App l icat ion
Tell the application to l i sten

Start the IOLoop



  

01_getting_started.py

show me the source!

file:///t/01_getting_started.py


  

what is an Application?

Collection of RequestHand lers
Implements l i sten :

Starts an HTTPServer
Sets the Application as request  ca l lback

Implements __ca l l__ :
Handles the user requests



  

t1_application_listen.py

show me the source!

file:///t/t1_application_listen.py


  

what does Application.__call__ do?

Parses  the URL
Decides which hand ler  to use

and creates an instance  of it
(each connection gets one)

_executes it
(passing any defined transforms to it –e.g, Gzip compression)



  

t2_application_call.py

show me the source!

file:///t/t2_application_call.py


  

what
   does RequestHandler._execute do?

Calls the handler method
Checks XSRF cookie

Maybe closes the connection



  

t3_request_handler_
_execute.py

show me the source!

file:///t/t3_request_handler__execute.py
file:///t/t3_request_handler__execute.py


  

IOLOOP

CALLBACK

TIMEOUT

event



  

Core of Tornado
Usable standalone or with WSGI

Used for server and client
Single instance per process

Small!

what is the IOLoop?



  

Loops forever
Executes:

Callbacks (asap)
Timeouts (when due)
Events (when occoured)

what does the IOLoop do?



  

what is an Event?

Something that happened  on a socket (fd)

(e.g. a user opened a conneciton)

Appl icat ions  define hand lers  for Events



  

how do I wait for an Event?

add_hand ler (fd, handler, events)

update_hand ler (fd, handler, events)

remove_hand ler (fd, handler)

“Notify me when I can READ or WR ITE ,

or when there is an ERROR”



  

IOLOOP

THE LOOP
in four steps



  

Process Callbacks
They were scheduled by previous:

Callbacks
Event handlers

first process the Callbacks



  

For each Timeout:
Is it due now?
Run its callback

Calculate the time till next Timeout

second process the Timeouts



  

Poll timeout:
Callbacks? Then 0
Timeouts? Then time until the next Timeout
Neither? 1 hour

Here the IOLoop blocks

third poll for Events



  

For each (file descriptor, Event):
Call its handler

...and repeat the loop

and fourth process the Events



  

THE 

EXAMPLE

WHAT it

really does



  

01_getting_started.py

show me the source!

file:///t/01_getting_started.py


  

Application.listen
starts HTTPServer

calls IOLoop.add_accept_handler
(Application.__call__ will handle the ACCEPT event)

and when a client connects...

what does the example do?



  

what does the example do?
IOLoop

polls
connection TCPServer

calls
HTTPServer

which is

HTTPConnection

creates           

read
 and callsheaders

body

 
reads

using callbacks

request_callback

             and calls

Application.__call__
which is RequestHandler

._execute
calls

(after parsing URL)

RequestHandler

calls      

get or post or ...
calls

HTTPConnection
writes to

(in chunks)

_auto_finish?
finishes

yes



  

t4_simple_ioloop.py

show me the source!

file:///t/t4_simple_ioloop.py


  

Scheduled

tasks



  

how do we schedule a task?

Call me back asap
Ioloop.add_ca l lback

Call me back later
Ioloop.add_t imeout

Call me of ten
Per iod icCa l lback



  

02_scheduled_tasks.py

show me the source!

file:///t/02_scheduled_tasks.py


  

how does add_callback work?

Adds the callback to the list of 
callbacks.

(and wraps it in a threadlocal-like stack context)



  

what do you mean, threadlocal-like?

StackContext

Keeps track of the socket connection

Handles association between socket and 
Application classes



  

t6_add_callback.py

show me the source!

file:///t/t6_add_callback.py


  

how does add_timeout work?

Pushes the timeout to the heap 
of timeouts.

(and wraps it in a threadlocal-like stack context too)



  

t7_add_timeout.py

show me the source!

file:///t/t7_add_timeout.py


  

how do PeriodicCallbacks work?

star t
Schedules the next t imeout  to call _run
Marks the PeriodicCallback as runn ing

stop
Removes the next t imeout
Marks the PeriodicCallback as stopped

_run
Calls the ca l lback
(unless stop was called)



  

t8_periodic_callback.py

show me the source!

file:///t/t8_periodic_callback.py


  

what about Callback?

Indeed.



  

Async

handlers

asynchronous@
&

auto_ _finish



  

how does @asynchronous work?

Sets _auto_f in i sh  to Fa lse
(and does some Exception wrapping)

The connection remains open
after get, post...

Close it yourse l f
(whenever  you want)



  

03_fetch_async.py

show me the source!

file:///t/03_fetch_async.py


  

I put a callback on your callback

Nested callbacks
make ugly code.



  

what about Callback?

Indeed.



  

generators



  

how do I avoid callbacks?

Use Ca l lback
(finally!)

and y ie ld

Or Task



  

04_fetch_gen.py

show me the source!

file:///t/04_fetch_gen.py


  

Yield

points



  

what is a YieldPoint?

Something you y ie ld

Then stuf f  happens



  

what is a YieldPoint?

Cal lback
Sends a resu l t  for a key

Wai t
Wai ts  till a resu l t  for a key arrives

Wai tMany
Same as Wai t , for many keys



  

Task
Wai t  + Ca l lback
(with an auto-generated key)

Mul t i
List of YeldPoints

what is a YieldPoint?



  

how do we do async processing?

callback=(yield Callback(“key”))

When a result arrives, send it for the 
key “key”

Let's fetch and return a 
webpage.

Get



  

how do we do async processing?

response=yield Wait(“key”)

When the result is sent, read it into 
response.

Let's fetch and return a 
webpage.

Get



  

04_fetch_gen.py

show me the source!

file:///t/04_fetch_gen.py


  

05_task.py

show me the source!

file:///t/05_task.py


  

t9_yield_points.py

show me the source!

file:///t/t9_yield_points.py


  

websockets



  

how do we use websockets?

Extend WebSocketHand ler
(instead of RequestHandler)

Implement on_message Let's fetch and return a 
webpage.

Get



  

06_websocket.py

show me the source!

file:///t/06_websocket.py


  

how do websockets work?

Similar to @asynchronous
(the connection is kept open)

After writing, read for more
(asynchronously—see IOStream)

To Application, it looks like a RequestHandler
Let's fetch and return a 

webpage.
Get



  

how does WebSocket work?

_execute

Accepts  the connection

Decides the vers ion  of the protocol.

Instantiates a WebSocketProtoco l  class

Let's fetch and return a 
webpage.

Get



  

how does WebSocketProtocol work?

accept_connect ion
Sends  the required initial message
Reads the next message (asynchronously)

_wr i te_response
Wri tes  a response on the socket
Reads the next message (asynchronously)

Let's fetch and return a 
webpage.

Get



  

ta_websocket.py

show me the source!

file:///t/ta_websocket.py


  

iostream



  

what does IOStream do?

Communicates with the socket

Asynchronous
Uses IOLoop Ca l lbacks Let's fetch and return a 

webpage.
Get



  

how does IOStream work?

_add_ io_state
“Notify me when I can READ or WRITE , or when ERROR”
schedules Ca l lback for an event (READ, WRITE, ...)

_hand le_events
Can I read? Call _hand le_read
Can I write? Call _hand le_wr i te
Handles errors

Let's fetch and return a 
webpage.

Get



  

how does IOStream work?

_hand le_read
Store data in read buffer
Call the read callback (_read_from_buffer)

_hand le_wr i te
Write data from the buffer into the socket (handling 
funny circumstances)

Call the write callback (if it exists)
Let's fetch and return a 

webpage.
Get



  

how does IOStream work?

connect
socket.connect
_add_ io_state (WRITE)

read
Set callback
Data in read buffer? Return it
Read buffer empty? _add_ io_state (READ)

wr i te
Add data to write buffer
_add_ io_state (WRITE)

Let's fetch and return a 
webpage.

Get



  

how do I use IOStream directly?

read_unt i l _regex
read_unt i l

read_bytes
read_unt i l _c lose

All take a callback Let's fetch and return a 
webpage.

Get



  

how do I use streaming callbacks?

read_bytes
read_unt i l _c lose

Param: streaming_ca l lback
Data is sent to callback as it arrives

Let's fetch and return a 
webpage.

Get



  

0a_async_callback.py

show me the source!

file:///t/0a_async_callback.py


  

database



  

how do I talk to a database?

database.connection
query(“SQL”)

Returns an iterable
Very simple Let's fetch and return a 

webpage.
Get



  

07_db.py

show me the source!

file:///t/07_db.py


  

Not async!



  

asyncmongo



  

what is asyncmongo?

Asynchronous  MongoDB client

Uses Tornado's IOLoop
Let's fetch and return a 

webpage.
Get



  

how do I use asyncmongo?

asyncmongo.Client
db.f ind

takes a ca l lback  parameter Let's fetch and return a 
webpage.

Get



  

08_mongo.py

show me the source!

file:///t/08_mongo.py


  

how does asyncmongo work?

Implements a Connect ion
Many: Connect ionPoo l
Sends data via Tornado's IOStream

Commands send via Cursor
Cursor.send_message

Uses Connection to communicate asynchronously Let's fetch and return a 
webpage.

Get



  

can we write our own asyncmysql?

Difficult
C driver has b lock ing  calls

mysql_query
mysql_store_result
mysql_use_result

Alternative
Use Twisted's txMySQL with tornado.platform.twisted
Slower

Let's fetch and return a 
webpage.

Get



  

Q A&



  

GRAZIE!

source: uncertain (sorry!)

dev@oscarvilaplana.cat
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