

TORNADO
IN DEPTH

thor

thunder

tro

tronar

tronada

tornar

tornada

tornada

tronada
+

tornada

TORNADO

what is it?

Non-blocking web server
Based on epoll / kqueue

Handles 1000s of connections
Powers FriendFeed

why do you even care?

Know what you use

I can't trust
what I don't know

Learning and sharing: fun!

what do you use it for?

We built a
Scalable
Distributed
Fault tolerant
High load

...thing

[CITATION NEEDED]

oscar.vilaplana@paylogic.eu

TORNADO

what is it made of?

IOLoop
Callbacks, Tasks, Timeouts

TCPServer
Application

RequestHandler
Generators

can I extend it?

Sure!
It's easy

How would we make
a simple TCPServer?

0b_tcpserver.py

show me the source!

file:///t/0b_tcpserver.py

GETTING

STARTED

how do I make the simplest app?

Define a RequestHand ler
Implement get

Define an App l icat ion
Tell the application to l i sten

Start the IOLoop

01_getting_started.py

show me the source!

file:///t/01_getting_started.py

what is an Application?

Collection of RequestHand lers
Implements l i sten :

Starts an HTTPServer
Sets the Application as request ca l lback

Implements __ca l l__ :
Handles the user requests

t1_application_listen.py

show me the source!

file:///t/t1_application_listen.py

what does Application.__call__ do?

Parses the URL
Decides which hand ler to use

and creates an instance of it
(each connection gets one)

_executes it
(passing any defined transforms to it –e.g, Gzip compression)

t2_application_call.py

show me the source!

file:///t/t2_application_call.py

what
 does RequestHandler._execute do?

Calls the handler method
Checks XSRF cookie

Maybe closes the connection

t3_request_handler_
_execute.py

show me the source!

file:///t/t3_request_handler__execute.py
file:///t/t3_request_handler__execute.py

IOLOOP

CALLBACK

TIMEOUT

event

Core of Tornado
Usable standalone or with WSGI

Used for server and client
Single instance per process

Small!

what is the IOLoop?

Loops forever
Executes:

Callbacks (asap)
Timeouts (when due)
Events (when occoured)

what does the IOLoop do?

what is an Event?

Something that happened on a socket (fd)

(e.g. a user opened a conneciton)

Appl icat ions define hand lers for Events

how do I wait for an Event?

add_hand ler (fd, handler, events)

update_hand ler (fd, handler, events)

remove_hand ler (fd, handler)

“Notify me when I can READ or WR ITE ,

or when there is an ERROR”

IOLOOP

THE LOOP
in four steps

Process Callbacks
They were scheduled by previous:

Callbacks
Event handlers

first process the Callbacks

For each Timeout:
Is it due now?
Run its callback

Calculate the time till next Timeout

second process the Timeouts

Poll timeout:
Callbacks? Then 0
Timeouts? Then time until the next Timeout
Neither? 1 hour

Here the IOLoop blocks

third poll for Events

For each (file descriptor, Event):
Call its handler

...and repeat the loop

and fourth process the Events

THE

EXAMPLE

WHAT it

really does

01_getting_started.py

show me the source!

file:///t/01_getting_started.py

Application.listen
starts HTTPServer

calls IOLoop.add_accept_handler
(Application.__call__ will handle the ACCEPT event)

and when a client connects...

what does the example do?

what does the example do?
IOLoop

polls
connection TCPServer

calls
HTTPServer

which is

HTTPConnection

creates

read
 and callsheaders

body

reads

using callbacks

request_callback

 and calls

Application.__call__
which is RequestHandler

._execute
calls

(after parsing URL)

RequestHandler

calls

get or post or ...
calls

HTTPConnection
writes to

(in chunks)

_auto_finish?
finishes

yes

t4_simple_ioloop.py

show me the source!

file:///t/t4_simple_ioloop.py

Scheduled

tasks

how do we schedule a task?

Call me back asap
Ioloop.add_ca l lback

Call me back later
Ioloop.add_t imeout

Call me of ten
Per iod icCa l lback

02_scheduled_tasks.py

show me the source!

file:///t/02_scheduled_tasks.py

how does add_callback work?

Adds the callback to the list of
callbacks.

(and wraps it in a threadlocal-like stack context)

what do you mean, threadlocal-like?

StackContext

Keeps track of the socket connection

Handles association between socket and
Application classes

t6_add_callback.py

show me the source!

file:///t/t6_add_callback.py

how does add_timeout work?

Pushes the timeout to the heap
of timeouts.

(and wraps it in a threadlocal-like stack context too)

t7_add_timeout.py

show me the source!

file:///t/t7_add_timeout.py

how do PeriodicCallbacks work?

star t
Schedules the next t imeout to call _run
Marks the PeriodicCallback as runn ing

stop
Removes the next t imeout
Marks the PeriodicCallback as stopped

_run
Calls the ca l lback
(unless stop was called)

t8_periodic_callback.py

show me the source!

file:///t/t8_periodic_callback.py

what about Callback?

Indeed.

Async

handlers

asynchronous@
&

auto_ _finish

how does @asynchronous work?

Sets _auto_f in i sh to Fa lse
(and does some Exception wrapping)

The connection remains open
after get, post...

Close it yourse l f
(whenever you want)

03_fetch_async.py

show me the source!

file:///t/03_fetch_async.py

I put a callback on your callback

Nested callbacks
make ugly code.

what about Callback?

Indeed.

generators

how do I avoid callbacks?

Use Ca l lback
(finally!)

and y ie ld

Or Task

04_fetch_gen.py

show me the source!

file:///t/04_fetch_gen.py

Yield

points

what is a YieldPoint?

Something you y ie ld

Then stuf f happens

what is a YieldPoint?

Cal lback
Sends a resu l t for a key

Wai t
Wai ts till a resu l t for a key arrives

Wai tMany
Same as Wai t , for many keys

Task
Wai t + Ca l lback
(with an auto-generated key)

Mul t i
List of YeldPoints

what is a YieldPoint?

how do we do async processing?

callback=(yield Callback(“key”))

When a result arrives, send it for the
key “key”

Let's fetch and return a
webpage.

Get

how do we do async processing?

response=yield Wait(“key”)

When the result is sent, read it into
response.

Let's fetch and return a
webpage.

Get

04_fetch_gen.py

show me the source!

file:///t/04_fetch_gen.py

05_task.py

show me the source!

file:///t/05_task.py

t9_yield_points.py

show me the source!

file:///t/t9_yield_points.py

websockets

how do we use websockets?

Extend WebSocketHand ler
(instead of RequestHandler)

Implement on_message Let's fetch and return a
webpage.

Get

06_websocket.py

show me the source!

file:///t/06_websocket.py

how do websockets work?

Similar to @asynchronous
(the connection is kept open)

After writing, read for more
(asynchronously—see IOStream)

To Application, it looks like a RequestHandler
Let's fetch and return a

webpage.
Get

how does WebSocket work?

_execute

Accepts the connection

Decides the vers ion of the protocol.

Instantiates a WebSocketProtoco l class

Let's fetch and return a
webpage.

Get

how does WebSocketProtocol work?

accept_connect ion
Sends the required initial message
Reads the next message (asynchronously)

_wr i te_response
Wri tes a response on the socket
Reads the next message (asynchronously)

Let's fetch and return a
webpage.

Get

ta_websocket.py

show me the source!

file:///t/ta_websocket.py

iostream

what does IOStream do?

Communicates with the socket

Asynchronous
Uses IOLoop Ca l lbacks Let's fetch and return a

webpage.
Get

how does IOStream work?

add io_state
“Notify me when I can READ or WRITE , or when ERROR”
schedules Ca l lback for an event (READ, WRITE, ...)

_hand le_events
Can I read? Call _hand le_read
Can I write? Call _hand le_wr i te
Handles errors

Let's fetch and return a
webpage.

Get

how does IOStream work?

_hand le_read
Store data in read buffer
Call the read callback (_read_from_buffer)

_hand le_wr i te
Write data from the buffer into the socket (handling
funny circumstances)

Call the write callback (if it exists)
Let's fetch and return a

webpage.
Get

how does IOStream work?

connect
socket.connect
add io_state (WRITE)

read
Set callback
Data in read buffer? Return it
Read buffer empty? _add_ io_state (READ)

wr i te
Add data to write buffer
add io_state (WRITE)

Let's fetch and return a
webpage.

Get

how do I use IOStream directly?

read_unt i l _regex
read_unt i l

read_bytes
read_unt i l _c lose

All take a callback Let's fetch and return a
webpage.

Get

how do I use streaming callbacks?

read_bytes
read_unt i l _c lose

Param: streaming_ca l lback
Data is sent to callback as it arrives

Let's fetch and return a
webpage.

Get

0a_async_callback.py

show me the source!

file:///t/0a_async_callback.py

database

how do I talk to a database?

database.connection
query(“SQL”)

Returns an iterable
Very simple Let's fetch and return a

webpage.
Get

07_db.py

show me the source!

file:///t/07_db.py

Not async!

asyncmongo

what is asyncmongo?

Asynchronous MongoDB client

Uses Tornado's IOLoop
Let's fetch and return a

webpage.
Get

how do I use asyncmongo?

asyncmongo.Client
db.f ind

takes a ca l lback parameter Let's fetch and return a
webpage.

Get

08_mongo.py

show me the source!

file:///t/08_mongo.py

how does asyncmongo work?

Implements a Connect ion
Many: Connect ionPoo l
Sends data via Tornado's IOStream

Commands send via Cursor
Cursor.send_message

Uses Connection to communicate asynchronously Let's fetch and return a
webpage.

Get

can we write our own asyncmysql?

Difficult
C driver has b lock ing calls

mysql_query
mysql_store_result
mysql_use_result

Alternative
Use Twisted's txMySQL with tornado.platform.twisted
Slower

Let's fetch and return a
webpage.

Get

Q A&

GRAZIE!

source: uncertain (sorry!)

dev@oscarvilaplana.cat

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100

