
Jacob Hallén
Testing for Beginners

Europython 2013



The code
def remove_dashes_from_date(date):
    date_list = date.split("-")
    return ''.join(date_list)

The test
 from my_module import remove_dashes_from_date 
class TestDate(object):
 def test_remove_dashes_from_date(self):
  date = "2012-12-04"
  assert remove_dashes_from_date(date) == "20121204"

Setup

Call Comparison
Expected value



  

Development process

User goals Requirements Program

Analyst Coder

Unit tests
Integration tests

System tests

Acceptance tests
Deployment tests



  

Unit testing

● Also known as component testing, refers to 
tests that verify the functionality of a specific 
section of code, usually at the function level. In 
an object-oriented environment, this is usually 
at the class level, and the minimal unit tests 
include the constructors and destructors.



  

Integration testing

● Any type of software testing that seeks to verify 
the interfaces between components against 
a software design.

● We put two or more components together and 
test that they interoperate as intended.

● Two schools – Big Bang and Incremental



  

System testing

● Tests a completely integrated system to verify 
that it meets its requirements.

● There are testing frameworks, but often you 
have to build your own testing harness.



  

Acceptance testing

● Determines if the software fulfills the user 
goals.
– May be manual

– May be a set of tests agreed on before 
development started

– May include tests for regulatory compliance



  

Deployment testing

● Ensures that the software works in its intended 
production environment
– Availability of all prerequsites

– Compatibility with library/OS versions

– Resource consumption

– Collision with other components



  

Tools for unit testing

● PyUnit – part of Cpython 
– Simple, explicit

● py.test – from merlinux, free software 
– Advanced gathering of test suites

– More support for complex setups

– Better diagnostics

● nosetest
– Same as py.test, but different

http://pytest.org/

http://docs.python.org/2/library/unittest.html

https://nose.readthedocs.org/



  

import unittest

from my_module import remove_dashes_from_date 

class TestDate(unittest.TestCase):
 def test_remove_dashes_from_date(self):
  date = "2012-12-04"
  self.assertEqual(remove_dashes_from_date(date), 
  "20121204")

PyUnit



  

Why are we (unit) testing?



  

Why are we testing?

● To formulate an idea of what the unit should do
● To check that we do what the tests asks

– While we develop

– Always in the future – prevent regressions

● To make the program testable
– Changes coding style!



  

Why are we testing?

● To eliminate bug sources
– Code coverage

– With enough tests, all bugs are shallow

● To help us understand our code at a later stage
– Refactoring

– Without tests, you are not refactoring. You are 
mucking about in your code.

● To know when we are done
– When your tests pass, you are fulfilling the 

specifications, as they are understood right now.



  

When do we run our tests?



  

When do we run our tests?

● To see if the code we are working on passes
– During development – may be partial

● Before check-in
– Full test suite, if possible

● Atomatically on each push
– Full test suite

● Nightly
– Full test suite



  

What are we testing?



  

What are we testing?

● Storing information
– Test: Store some information, retreive it and check that 

it is the same

● Retreiving information
– Test: Store some information, retreive it and check that 

it is the same

● Calculating stuff
– Test: Make the calculation and compare with the 

expected result

Continued



The code
class X(object):
    def __init__(self, value):
        self.value = value
    def get_value(self):
        return self.value

The test
import pytest
class TestX(object):
   def test_setter(self):
      val = "A text"

    obj = X(val)
      assert obj.value == val

Storing



The code
class X(object):
    def __init__(self, value):
        self.value = value
    def get_value(self):
        return self.value

The test
import pytest
class TestX(object):
    def test_getter(self):
        val = "A text"

      obj = X(val)
        assert obj.get_value() == val

Retreiving



The code
def remove_dashes_from_date(date):
    date_list = date.split("-")
    return ''.join(date_list)

The test
 import pytest
class TestDate(object):
 def test_remove_dashes_from_date(self):
  date = "2012-12-04"
  assert remove_dashes_from_date(date) == "20121204"

Calculating



  

What are we testing?

● Input
– This includes network connections, databases, user 

access and input from 3rd party libraries

– Test: Put some known input on the channel, Check 
that it gets into the program in the expected form.

● Output
– Network connections, user output, 3rd party 

libraries

– Test: Check that your output is what you expect.
This is often hard! 



  

import pytest, sqlite3
from stocks import get_stock

@pytest.fixture
def db():
  conn = sqlite3.connect('example.db')
  c = conn.cursor()
  c.execute('''CREATE TABLE stocks
    (name text, date text, trans text, ...)''')
  c.execute('''INSERT INTO stocks VALUES 
    ('MSFT', '2006-01-05','BUY', ...)''')
  conn.commit()
  yield conn
  # Teardown code goes here

class TestDB(object):
  def test_get_stock(self, db):
    assert get_stock(db, 'MSFT')['date'] == '2006-01-05'
    

Input

Known data



  

Output

0. Write expected result by hand
1. Make call to generate file
2. Open file
3. Open file with expected result
4. Compare contents
5. If equal, test passed
6. If not equal, show diff

If the expected result changes, we have to
modify the expected results 



  

Combinations

● Retreive – store
– Test: Store something, run code, check store

● Retreive – calculate – store
– Test: Store something, run code, check store

● Input – calculate – store
– Test: Known data, run code, check store

● Retreive – calculate – output
– Test: Store something, run code, check output

– Doubly hard



  

Avoiding combinations

● Refactor your code
– Break out calculations

– Split out input/output

– Separate retreiving and storing

● Test output with simple, unchanging data
– Test the data that goes to the output before it gets 

there



  

Dealing with things that are hard to test



  

class MockDB(object):
    def cursor(self):
        return self

    def execute(self, sql_str):
        return [['MSFT', 
                 '2006-01-05','BUY', ...]]

Mocking input



  

class MockSocket(object):
    def connect(self, *args):
        self.buffer = StringIO()
        return self

    def write(self, arg):
        self.buffer.write(arg)

You can now use Mocksocket.buffer.getvalue()
to check what you sent to the socket.

Mocking output



  

Tests are samples

● A general case
● Edge cases – all of them
● Exceptions – all explicit ones, important implicit 

ones

with pytest.raises(KeyError):
    my_func('xyzzy')



  

How much do I need to test?

● Untested code is a technical debt
– Technical debt accrues interest

● The amount of interest depends on many 
factors
– Longevity of the code

– Need for change

– Criticality of the code

– Number of users



  

The testing technical debt is all the extra time and 
costs you have to spend in the future because 
you didn't write tests when you wrote the code.



  

If you can't do full coverage, test the most 
primitive parts of your system.



jacob@openend.se
http://www.openend.se

We can help you getting started with testing.
Mentoring, peer programming, code review, 

tools, infrastructure.

file:///home/jacob/ep/
file:///home/jacob/ep/

	Sida 1
	Sida 2
	Sida 3
	Sida 4
	Sida 5
	Sida 6
	Sida 7
	Sida 8
	Sida 9
	Sida 10
	Sida 11
	Sida 12
	Sida 13
	Sida 14
	Sida 15
	Sida 16
	Sida 17
	Sida 18
	Sida 19
	Sida 20
	Sida 21
	Sida 22
	Sida 23
	Sida 24
	Sida 25
	Sida 26
	Sida 27
	Sida 28
	Sida 29
	Sida 30
	Sida 31
	Sida 32

