
 Server Side Story

 An asynchronous ballet

Simone Deponti - simone.deponti@abstract.itEuroPython 2013

Who am I

Python web developer since 2006
Work at Abstract as web developer
Plone contributor
Do more Javascript than I'm willing to
admit

Abstract @ EuroPython 2013

Am I in the wrong room?

This talk will focus on:
• Where web development comes from
• Challenges of real-time applications
• Patterns and tools to deal with that

Abstract @ EuroPython 2013

CODE SAMPLE FREE! (A
LMOST)

A LITTLE BIT OF HISTORY

Let there be <a> link

The web was born as:
• Simple document retrieval
• Interlinking of documents

Abstract @ EuroPython 2013

Have you seen?

Next step:
• Searching documents
• Query parameters
• POST and Forms
• CGI
• We start having stuff that's not

documents

Abstract @ EuroPython 2013

Statefulness

HTTP is stateless
• stateless isn't good for applications
• cookies add statefulness

Abstract @ EuroPython 2013

Javascript

Executing code on the client was needed:
• provisions for scripting were there
• we lacked a language and a way to

interact with the document
• Javascript and the DOM came

Abstract @ EuroPython 2013

AJAX

Javascript was limited to mangling the
DOM
• AJAX added the ability to make

requests "on the side"
• One-page applications
• State lives on the client, too!

Abstract @ EuroPython 2013

CURRENT SITUATION

Web applications

So far:
• the server is the master
• all data lives there
• the client requests stuff and gets a

reply

Abstract @ EuroPython 2013

Web applications (server side)

Every "classic" web app does this on every
request:
• pull up the state
• process the request
• assemble a response
• save the new state and return it back

Abstract @ EuroPython 2013

I've got something to say!

The server can speak only when asked.
This maps poorly on these cases:
• Notifications
• Chat systems
• Real time applications

Abstract @ EuroPython 2013

SOLUTIONS

Polling

Polling is the simplest solution, and the
worst
• You keep annoying the server
• Wasting memory, CPU, bandwidth on

both sides just to annoy a component
of your stack

• Logarithmic polling isn't a solution

Abstract @ EuroPython 2013

COMET

Also called long polling
• Still based on request-reply
• The server replies very slowly,

allowing time to elapse and hoping
that something happens

Abstract @ EuroPython 2013

BOSH

The formal way to do COMET, as done by
XMPP:
• Client starts a long-polling connection
• If something happens on the client

side, client sends a second request,
server replies on the first and closes,
second remains open

• Before expiration time, server sends
empty message and closes, client
reopens connection.

Abstract @ EuroPython 2013

http://xmpp.org/extensions/xep-0124.html#technique

http://xmpp.org/extensions/xep-0124.html#technique

You might not be able to deal with this

If your execution model calls for one
thread/process per request, you're out of
luck.
You must use an asynchronous server.

Abstract @ EuroPython 2013

Websockets

A new protocol
• a bidirectional connection tunneled

through HTTP (similar to a raw TCP
connection)

• HTTP 1.1 has provisions for this
• Sadly, it's the part of the protocol

where many implementors got bored

Abstract @ EuroPython 2013

http://tools.ietf.org/html/rfc6455

http://tools.ietf.org/html/rfc6455

Websockets in Python

from geventwebsocket.handler import WebSocketHandler
from gevent.pywsgi import WSGIServer
[...]

@app.route('/api')
def api():
 if request.environ.get('wsgi.websocket'):
 ws = request.environ['wsgi.websocket']
 while True:
 message = ws.wait()
 ws.send(message)
 return

if __name__ == '__main__':
 server = WSGIServer([...],handler_class=WebSocketHandler)
 [...]

Abstract @ EuroPython 2013
https://gist.github.com/lrvick/1185629

https://gist.github.com/lrvick/1185629

Asyncronous I/O

Is hard.
• Processes and traditional threads don't

scale for real-time apps
• Callback based systems are one

solution
• Green threads are another one

In Python, there is no clean and easy
solution.

Abstract @ EuroPython 2013

http://stackoverflow.com/a/3325985/967274

http://stackoverflow.com/a/3325985/967274

Tulip (PEP 3156)

Tries to provide a common groud for all
frameworks targeting asyncronous I/O
• Has a pluggable event loop interface
• Uses futures to abstract callbacks
• Allows using callbacks or coroutines

(via yield from)
• Uses the concept of transports and

protocols

Abstract @ EuroPython 2013

Tulip (PEP 3156)

Pros and cons
• Tulip isn't simple or straightforward
• Because of its constraints
• Reinventing the whole Python

ecosystem ain't an option
• Tulip is a library, frameworks can build

on top of it
• Planned to land in 3.4
• Conveniently wraps parts of the

standard library

Abstract @ EuroPython 2013

Tulip and websockets

Tulip supports websockets
• Has an example in the source, solving

the broadcaster use case
• The example is fairly complete (and

complex)

Abstract @ EuroPython 2013

http://code.google.com/p/tulip/source/browse/examples/wssrv.py

http://code.google.com/p/tulip/source/browse/examples/wssrv.py

Architectural considerations

Most of the quick fixes you're used to
won't work
• Caching can't be layered over the

frontend to mask problems
• Code flow must receive extra care
• You still need to deal with an awful lot

of synchronous calls, and orchestrate
them with asynchronous calls

Abstract @ EuroPython 2013

http://python-notes.boredomandlaziness.org/en/latest/pep_ideas/async_programming.html

http://python-notes.boredomandlaziness.org/en/latest/pep_ideas/async_programming.html

Shar(d)ed state

Real time applications behave like clusters
• State is sharded between nodes
• You must orchestrate and deal with

inconsistencies
• People doing clusters (or cloud

systems) have already some
theoretical work done

Abstract @ EuroPython 2013

Scaling

Once you're able to manage the shared
state, scaling becomes easier and linear.
However, due to the nature of the control
flow, it will cost more than with non-
realtime web applications.

Abstract @ EuroPython 2013

Security considerations

Websockets have security provisions to
avoid blatant abuses.
However:
• Authentication and authorization are

delegated to the application
• Statefulness is a double-edged sword
• The protocol itself is fairly new and

underdeployed

Abstract @ EuroPython 2013

Security considerations (2)

Websockets use the origin model
• These provisions are relevant for

browsers only
• Intended to impede browser hijacking
• RFC clearly states that validation of

data should always be performed on
both sides

• Resist the urge to allow for arbitrary
objects to be passed between server
and client

Abstract @ EuroPython 2013

Conclusions

• Real time applications require a
fundamental change of paradigm

• This paradigm change spawned a new
protocol on the client side

• The server side should abandon the
standard model and embrace event
based asynchronous systems

• In python we already have tools to
deal with these challenges, but the
landscape is fragmented

Abstract @ EuroPython 2013

Conclusions (2)

• Python 3.4 will (hopefully) lay a
common layer to address these
architectural problems

• There are fundamental architectural
changes that the paradigm brings to
web applications, making it almost
equal to native applications

• The area still needs to mature to fully
expose challenges especially in the
area of security

Abstract @ EuroPython 2013

Simone Deponti
simone.deponti@abstract.it
@simonedeponti

Questions?

Abstract @ EuroPython 2013

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

