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Who am I

Python web developer since 2006
Work at Abstract as web developer
Plone contributor
Do more Javascript than I'm willing to 
admit
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Am I in the wrong room?

This talk will focus on:
• Where web development comes from
• Challenges of real-time applications
• Patterns and tools to deal with that
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CODE SAMPLE FREE! (A
LMOST)



A LITTLE BIT OF HISTORY



Let there be <a> link

The web was born as:
• Simple document retrieval
• Interlinking of documents
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Have you seen?

Next step:
• Searching documents
• Query parameters
• POST and Forms
• CGI
• We start having stuff that's not 

documents
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Statefulness

HTTP is stateless
• stateless isn't good for applications
• cookies add statefulness 
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Javascript

Executing code on the client was needed:
• provisions for scripting were there
• we lacked a language and a way to 

interact with the document
• Javascript and the DOM came
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AJAX

Javascript was limited to mangling the 
DOM
• AJAX added the ability to make 

requests "on the side"
• One-page applications
• State lives on the client, too!
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CURRENT SITUATION



Web applications

So far:
• the server is the master
• all data lives there
• the client requests stuff and gets a 

reply
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Web applications (server side)

Every "classic" web app does this on every 
request:
• pull up the state
• process the request
• assemble a response
• save the new state and return it back
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I've got something to say!

The server can speak only when asked.
This maps poorly on these cases:
• Notifications
• Chat systems
• Real time applications

Abstract @ EuroPython 2013



SOLUTIONS



Polling

Polling is the simplest solution, and the 
worst
• You keep annoying the server
• Wasting memory, CPU, bandwidth on 

both sides just to annoy a component 
of your stack

• Logarithmic polling isn't a solution
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COMET

Also called long polling
• Still based on request-reply
• The server replies very slowly, 

allowing time to elapse and hoping 
that something happens
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BOSH

The formal way to do COMET, as done by 
XMPP:
• Client starts a long-polling connection
• If something happens on the client 

side, client sends a second request, 
server replies on the first and closes, 
second remains open

• Before expiration time, server sends 
empty message and closes, client 
reopens connection.
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You might not be able to deal with this 

If your execution model calls for one 
thread/process per request, you're out of 
luck.
You must use an asynchronous server.
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Websockets

A new protocol
• a bidirectional connection tunneled 

through HTTP (similar to a raw TCP 
connection)

• HTTP 1.1 has provisions for this
• Sadly, it's the part of the protocol 

where many implementors got bored
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Websockets in Python

from geventwebsocket.handler import WebSocketHandler
from gevent.pywsgi import WSGIServer
[...]

@app.route('/api')
def api():
   if request.environ.get('wsgi.websocket'):
       ws = request.environ['wsgi.websocket']
       while True:
           message = ws.wait()
           ws.send(message)
   return
 
if __name__ == '__main__':
   server = WSGIServer([...],handler_class=WebSocketHandler)
   [...]
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Asyncronous I/O

Is hard.
• Processes and traditional threads don't 

scale for real-time apps
• Callback based systems are one 

solution
• Green threads are another one

In Python, there is no clean and easy 
solution.
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http://stackoverflow.com/a/3325985/967274
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Tulip (PEP 3156)

Tries to provide a common groud for all 
frameworks targeting asyncronous I/O
• Has a pluggable event loop interface
• Uses futures to abstract callbacks
• Allows using callbacks or coroutines 

(via yield from)
• Uses the concept of transports and 

protocols 
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Tulip (PEP 3156)

Pros and cons
• Tulip isn't simple or straightforward
• Because of its constraints
• Reinventing the whole Python 

ecosystem ain't an option
• Tulip is a library, frameworks can build 

on top of it
• Planned to land in 3.4
• Conveniently wraps parts of the 

standard library
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Tulip and websockets

Tulip supports websockets
• Has an example in the source, solving 

the broadcaster use case
• The example is fairly complete (and 

complex)
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http://code.google.com/p/tulip/source/browse/examples/wssrv.py
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Architectural considerations

Most of the quick fixes you're used to 
won't work
• Caching can't be layered over the 

frontend to mask problems
• Code flow must receive extra care
• You still need to deal with an awful lot 

of synchronous calls, and orchestrate 
them with asynchronous calls

Abstract @ EuroPython 2013

http://python-notes.boredomandlaziness.org/en/latest/pep_ideas/async_programming.html
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Shar(d)ed state

Real time applications behave like clusters
• State is sharded between nodes
• You must orchestrate and deal with 

inconsistencies
• People doing clusters (or cloud 

systems) have already some 
theoretical work done
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Scaling

Once you're able to manage the shared 
state, scaling becomes easier and linear.
However, due to the nature of the control 
flow, it will cost more than with non-
realtime web applications.
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Security considerations

Websockets have security provisions to 
avoid blatant abuses.
However:
• Authentication and authorization are 

delegated to the application
• Statefulness is a double-edged sword
• The protocol itself is fairly new and 

underdeployed

Abstract @ EuroPython 2013



Security considerations (2)

Websockets use the origin model
• These provisions are relevant for 

browsers only
• Intended to impede browser hijacking
• RFC clearly states that validation of 

data should always be performed on 
both sides

• Resist the urge to allow for arbitrary 
objects to be passed between server 
and client
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Conclusions

• Real time applications require a 
fundamental change of paradigm

• This paradigm change spawned a new 
protocol on the client side

• The server side should abandon the 
standard model and embrace event 
based asynchronous systems

• In python we already have tools to 
deal with these challenges, but the 
landscape is fragmented
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Conclusions (2)

• Python 3.4 will (hopefully) lay a 
common layer to address these 
architectural problems

• There are fundamental architectural 
changes that the paradigm brings to 
web applications, making it almost 
equal to native applications

• The area still needs to mature to fully 
expose challenges especially in the 
area of security
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Simone Deponti
simone.deponti@abstract.it
@simonedeponti

Questions?
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