

Realizzare un emulatore di
videogiochi

Lorenzo Mancini

EuroPython 2011 – Florence

lmancini@develer.com

Our plan

 Give some emulation background
 Introduce the canonic 80's video game model
 Write an emulator from scratch

Emulation 101

 What is an emulator?
 Software/hardware imitating a system
 Accuracy/speed compromise
 “Perfect” emulation – possible?

 What are emulators useful for?
 Preservation of existing software
 Existing software restyling
 Compatibility layer

Practical applications

 Nintendo's Virtual Console ($66M 2010)
 Printers (HP LaserJet)

 As compatibility layer
 VMWare's VMTools ($100M 2010)

The overall picture

CPU Memory

Graphics

I/O

Interrupts

Sound

CPU

 Defines an instruction set
 Can execute programs

 The CPU has a state
 Program counter
 Registers

 Opcodes and cycles
 Often an off-the-shelf component

CPU

R2

PC

R1 Rn

Memory

 Heterogeneous storage
 Instructions (program)
 Data

 Addressable
 R/W access from CPU

MemoryP D

Emulation approaches

 Interpreted
 Read and execute instructions one by one
 The CPU is simulated

 Dynamic recompilation
 On-the-fly translation for target
 Uses target's CPU (less overhead)

 Let's start with the interpreted approach

The emulator core

 for _ in range(cycles_to_execute):
 # Fetch
 opcode = memory[PC]

 # Decode
 instruction = decode(opcode)

 # Execute
 execute(instruction)

 PC += 1

 Fetch-decode-execute loop

Graphics / Sound

 Graphic subsystem
 Can be as simple as a video buffer
 Can be as complicated as a GPU

 Sound subsystem
 They offload the CPU
 Often they're custom components

Graphics

Sound

I/O, interrupts, timers

 Three related concepts
 I/O and the world outside

 How does one check for input data?
 Interrupts vs. polling
 Timers

I/O Interrupts

A complete emulator loop

while running:

 # Fetch-decode-execute
 executeCPU(n_cycles)

 # Do we need to generate interrupts?
 generateInterrupts()

 # Update machine status
 updateVideo()
 updateSound()
 updateTimers()

 # synchronize according to n_cycles
 sync()

Introducing the Chip-8

 A video game VM for hobbyists machines
 In a sense, the original Chip-8 was itself an

emulator!

Chip-8 tech sheet

 CPU
 16 data registers (8 bit), 1 address register (16 bit)

 Memory
 4kb RAM (minus 200 bytes actually)

 Graphics
 64x32 pixels screen, monochrome, sprite-based

 Input: hex keyboard
 Timers: delay and sound
 No interrupts!

Our target

 Emulate the Chip-8, using Brix rom as testbed

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15

