Python’s Other Collection Types
and Algorithms

Andrew Dalke

dalke@dalkescientific.com

N\
Ci‘dauu:.- scientific
More science. Less time.

list - stack - deque
bisect - heapqg

tuple - namedtuple
set - frozenset

dict - defaultdict - Counter - OrderedDict

List

>>> year = 2011

>>> event = "EuroPython"”

>>> where = "Italy"

>>> data = [year, event, where, event]
>>> data

[2011, 'EuroPython', 'Italy', 'EuroPython']
>>>

Contiguous block of PyObject *

0 1 2 3

“EuroPython”™ “ltaly”

Long (Unicode) string (Unicode) string

100,000 random lookups in an list of length N

Time for 100,000 random lookups (sec)

0.700

+ The next
doubling takes
|43 seconds!

0.525

0.350 ; +

+

-+
-+

.
+++++++++++++++++T
0.175

4 MB level 3 cache 5
24 bytes per float .~ 150,000 floats
4 bytes per PyObject™® :

0 - - . . r . .
1E+00 1E+01 1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08

Python list with N random.random() values

Append to a list

>>> words = []
>>> for line in open("/usr/share/dict/words"):
words.append(line.strip())

>>> len(words)

234936

>>> words|[:4]

['A', 'a', 'aa', 'aal']

How does append work!

>SS Words= ['A', |a|, Iaal]
>>> words.append(' 'aal’)

Slow algorithm is O(n?)

“words” list implementation points to a block of Python references

words
l
o
=
N

append a reference to “aal”

Make a new list of length 3+1 =4

'TYY

words

Make references to objects in the old list

TP

0 1 2 3

words

words

Add the reference to ‘‘aa

I”

Update “words” to use the new contiguous block

words
|
o
|_l
N

words

Free the old block

This append algorithm takes O(n?) time

An append to a list of size n takes n copies.

Appending |10 elements to an empty list does
O+ 1+2+3+4+5+6+7+8+9 = 45 pointer copies

1000 elements would do 499500 copies

The fix is simple ...

Preallocate empty space proportional
to the list size (about |3%)

append()

append()

append()

append()

Appending 1000 elements needs fewer than 9000 copies
“Amortized linear append”

Deletion (pop(), del,and remove())
does a C realloc when the used size
is less than the preallocated size

In other word, pop() is also “amortized linear” time

list.insert(0, item)

This still has quadratic scaling

Okay to use when small or rarely used
sys.path.insert(0, “/path/to/myl/library’)

Otherwise, probably want to use deque

“top” of the stack

push bop “Stack”
S~ Abstract Data Type

“bottom” of the stack

A Python list

“top”’ of the stack .
is also a stack

“push” = list.append()
“pop” = list.pop()
“top” = list[-1]
“empty?” = bool(list)

These operations
are O(1)
(amortized)

“bottom’’ of
the stack

“stack’ is an “abstract data type”

ADTs can map directly to a single class
Sometimes multiple ADTs map to the same class

Some ADTs are synthesized from existing
data structures and other functions
and exist only by convention

Stacks are often used to process tree structures

src
-EUtils
-—-EUtils
—-——elementtree
—-——examples
-—-—tests

-Martel-0.5
——-builders
---doc
—-——examples
———-formats
-——test
-PyRSS2Gen
—---CVS
——-build
————— lib
-——dist
-lolpython
-mysql chem
-mysql oechem

Search the directory tree to find a given name

I’'m looking for a file named “listobject.c”
| know it’s somewhere in my Python distribution.

>>> find filename("/Users/dalke/python-live", "listobject.c")

'/Users/dalke/python-live/Objects/listobject.c’
>>>

lgnore “find” and os.walk() and other tools.
lgnore cycles, unreadable directories, etc.

Standard depth-first/recursive solution

def find filename recursive(dirname, target filename):
Check all filenames in the directory.
subdirs = []
for filename in os.listdir(dirname):
path = os.path.join(dirname, filename)
1f filename == target filename:
return path
Keep track of subdirectories for later processing.
1f os.path.isdir(path):
subdirs.append(path)

Processed all of the names in this directory.

Recursively search each of the subdirectories
for path in subdirs:
found filename = find filename recursive(path, target filename)
1f found filename:
return found filename

Not found
return None

def find filename recursive(dirname, target filename):
Check all filenames in the directory.
subdirs = []
for filename in os.listdir(dirname):
path = os.path.join(dirname, filename)
1f filename == target filename:
return path
Keep track of subdirectories for later processing.
1f os.path.isdir(path):
subdirs.append(path)

Processed all of the names in this directory.

Recursively search each of the subdirectories
for path in subdirs:

found filename = find filename recursive(path, target filename)
1f found filename:
return found filename \
)
Not found There’s the stack

return None

Manage the stack myself - simpler!

def find filename dfs(root, target filename):
Keep track of the directories to search

search stack = [root]

while search stack:
Pop the top item from the stack

dirname = search stack.pop()

for filename 1n os.listdir(dirname):
path = os.path.join(dirname, filename)

Does the filename exist in the directory?
1f filename == target filename:
return path

If it's a directory, add it to the set
of directories I need to search
i1f os.path.isdir(path):

search stack.append(path)

Not found
return None

People tend to make shallow trees

Software tends to make deep trees

A breadth-first search might be better than depth-first

Breadth-first search

src
src/EUtils
src/Martel-0.5

src/EUtils/EUtils
src/EUtils/elementtree
src/EUtils/examples
src/EUtils/tests
src/Martel-0.5/builders

src/EUtils/tests/data

Change for a breadth-first search

def find filename bfs(root, target filename):
Keep track of the directories to search

search stack = [root]

while search stack:
Pop the bottom item from the stack

dirname = search stack.pop(0)

for filename 1n os.listdir(dirname):
path = os.path.join(dirname, filename)

Does the filename exist in the directory?
1f filename == target filename:
return path

If it's a directory, add it to the set
of directories I need to search
i1f os.path.isdir(path):

search stack.append(path)

Not found
return None

Remember, list.pop(0) takes O(N) time

[///]/

Append N items followed by N pop(0) calls

time in seconds

1.00000E+03

1.00000E+02

1.00000E+01

1.00000E+00

1.00000E-01

1.00000E-02

1.00000E-03

1.00000E-04

1.00000E-05

O(1) function call
overhead dominates +

;
] L With sizes > 1000
+

6
the quadratic pop(0)
-+
s t emerges
+
-+
10 100 1000 10000 100000 1000000

collections.deque

deque is a double-ended queue

deque

container

\\

<

\ 4 v
PyObject jl PyObiject

\ 4 \ 4
PyObject gl PyObiject

collections.deque(string.ascii_uppercase)

> > > >
A B Y Z
< <€ < <€
pop()
> > >
A B Y
<€ <€ <€
popleft()
> >
B Y
<€ <€

Append N items followed by:

1.00000E+03

1.00000E+02

1.00000E+01

1.00000E+00

1.00000E-01

1.00000E-02

1.00000E-03

time in seconds

1.00000E-04

1.00000E-05

+ list - N pop(0) calls
O deque - N popleft() calls

+ deque is
' 750x
. faster!

¥
+
¢ +

10 100 1000 10000 100000 1000000

Even with N=1 deque.pop() is also
deque is 25% faster N faster than list.pop()

Using a deque for breadth-first search

def find filename bfs(root, target filename):
Keep track of the directories to search
search queue = collections.deque([root])

while search queue:
Pop the bottom item from the stack

dirname = search queue.popleft()

for filename 1n os.listdir(dirname):
path = os.path.join(dirname, filename)

Does the filename exist in the directory?
1f filename == target filename:
return path

If it's a directory, add it to the set
of directories I need to search
i1f os.path.isdir(path):

search queue.append(path)

Not found
return None (Why do | use “_stack” or “_queue” in the variable name?)

deques and FIFO task queues

tasks = collections.deque([first task])

while tasks:
running task = tasks.popleft()
new tasks = running task.run()
tasks.extend(new tasks)

deques support a maximum size
“Keep track of the last N things”

from collections import deque
from itertools import chain,

history = deque([], 3)

with open("/usr/share/dict/words") as f:

for line in f£f:
if line != "Miamiln":

history.append(line)

else:

print ("===== Start
for line in chain(history,
print(line, end="")

print("===== End

islice

mho
mhometer
mi

Miami
miamia

[line],

islice(f, 0, 3)):

Working with sorted data

What if | want to find an object!?

Prerequisite: objects implement eq

def index(container, value):
for 1, i1tem i1n enumerate(container):
1f item == value:
return 1
ralse ValueError(value)

This is the list.index() algorithm

What if elements support 1t !

Then we can sort them!

>>> f = open("/usr/share/dict/words")
>>> words = [line.strip() for line 1in f]
>>> words|[:4]

['A', 'a', 'aa', 'aal']

>>> words.sort ()

>>> words|[:4]

['A', 'Aani’', 'Aaron’', 'Aaronic’']

>>>

Or: words = sorted(line.strip() for line in f)

Searching a sorted list takes O(log(N)) time

Use a binary search

-

Binary search is notoriously
hard to get right.

Use Python’s bisect module.

(plus the helper functions in the documentation)

Based on the documentation

import bisect

def index(container, value):
1 = bisect.bisect left(container, value)
1if 1 != len(container) and container[i1] == value:
return 1
raise ValueError(value)

>>> 1ndex(words, "hello")

97803

>>> 1ndex(words, "hello2")

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 5, i1n index

ValueError: hello?2

Linear search vs. bisect search of an ordered list of words

list.index bisect index

0 A 0.3 ps .3 us
46 Abigalil |.2 |.2
1000 Amazonian |9 |.2
| 17468 liang 2,900 .|
234935 zythum 5,400 |.2

The abstract data type is
“binary searchable list”

The concrete implementation uses

- a Python list,

- the bisect module,

- convention on how
they work together

What is the longest word in the list of words!?

>>> max((len(word), word) for word in words)
(24, 'thyroparathyroidectomize')
>>>

What are the top five longest word?

>>> gorted(words, reverse=True, key=len)[:5]

[' formaldehydesulphoxylate', 'pathologicopsychological',
'scientificophilosophical’, 'tetraiodophenolphthalein’,
'thyroparathyroidectomize']

>>>

Sorting the entire list takes O(N log(N)) time!

Workaround solution

def find longest(words, count=1):

largest = []

for word in words:
Use "-len(word)" so the shortest word
has the largest (least negative) number
largest.append((-len(word), word))

Sort so the smallest word is last
largest.sort ()

1f len(largest) > count:
largest.pop()

return [word for (negsize, word) 1in largest]

O(N) in the number of words, but large overhead

heapq module

Priority Queue

Elements must support comparison (1t)
You can “push” and “pop”, like a stack or queue

“pop” removes and returns the smallest item

“push” and “pop” take O(log(N)) time

(Note: many people say that elements have a “priority”, and pop
returns the item with the highest priority. Python’s terminology
reflects the implementation similarities to a sorted list.)

Priority queues are built from:

- a Python list (the concrete data type)
- functions from the heapg module
- convention to not break heap invariants

>>> import heapq

>>> data = []

>>> heapq.heappush(data, 5)
>>> heapqg.heappush(data, 3)
>>> heapq.heappush(data, 7)
>>> data[0]

3

>>> heapqg.heappop(data)

3

>>> data[0]

5

Longest “count” words using a priority queue

from heapqg import heappush, heappop

def find longest(words, count=1):
largest = []
for word in words:
Use len(word) so the shortest word
has the smallest value (it gets popped first)
heappush(largest, (len(word), word))

1if len(largest) > count:
heappop (largest)

largest.sort (reverse=True)
return [word for (n, word) in largest]

(there are ways to make this a bit faster)

heapg.nsmallest / heapg.nlargest

The heapq module has a better version of this algorithm

>>> heapg.nlargest(5, words, key=len)

[' formaldehydesulphoxylate', 'pathologicopsychological',
'scientificophilosophical’', 'tetraiodophenolphthalein',
'thyroparathyroidectomize']

heapq also implements a merge sort given sorted iterables

Scheduling with a Priority Queue
Need to schedule tasks to run in the future.

import time
import itertools
from heapqg import heappush, heappop

counter = itertools.count(l) # unique identifier

tasks = []

def add task(delay, task):
heappush(tasks, (time.time() + delay, next(counter), task))

def process tasks():

while tasks:

def stretch():
t, L'lld, task = heappop(taSkS) e STretcC ()

print("Stretch!")

@t = t - time.time() add task(3, stretch)
1f dt >= 0: -
time.sleep(dt) def save():
task() print("Save your code!")

add_ task(5, save)

add task(1l, stretch)
add_ task(1l, save)
process tasks()

Tuple

Two common uses of a tuple

VO

“a read-only list” “a light-weight object”

(“frozenlist™)

Both are supported, but strongly weighted to the right.

Tuples are for heterogeneous data, list are for homogeneous data.
Tuples are *not* read-only lists.

Guido van Rossum March 12, 2003 in python-dev

Don’t treat Guido’s statement as a mandate!

Yes, taking Guido too seriously can have that effect on people <1.1 wink>
The trick is in knowing when Guido is proscribing dogmatic law, and when he
is describing his intent when he designed feature(tte)s of Python, or his
point of view at this moment, or how he wished people would see it, or

reacting to what he had for lunch. He's just human, you know, and no more
infallible than the best of us.

Thomas Wouters March 12, 2003 in python-dev

- Issue #2025: Add tuple.count() and tuple.index()
methods to comply with the collections.Sequence API.

NEWS in Python-2.6

[count () and index()] shouldn't be a burden for
implementers who use real inheritance from Sequence,
as they are concrete methods there. And it doesn't
make sense to move them to MutableSequence, because
there's nothing in them that requires the sequence to

be mutable.
[Python-3000] ABC method mismatch, Feb 6 2008

Raymond Hettinger, Guido van Rossum, Fred Drake

Tuples as dictionary keys

color names = {
(255,0,0): "red",
(128,128,0): "olive",
(255,255,0): "yellow",
(0,128,128): "teal',

}

def to hex(color):
return "#%02x%02x%02x" % color

>>> color = (255, 0, 0)

>>> color names.get(color) or to hex(color)
'red
>>> color = (0, 0, 0)

>>> color names.get(color) or to hex(color)
'#000000°

Tuples as light-weight objects

color = (255, 0, 0)

red green blue

Just have everyone agree that color[0] means red,
color[|] means green, color[2] means blue

Just like we might agree that color.red means red,
color.green means green, and color.blue means blue.

It’s easier to understand attributes
Python 2.5

>>> import time
>>> time.gmtime ()
(2011, 6, 17, 22, 31, 25, 4, 168, 0)

Python 2.6

>>> import time

>>> time.gmtime ()
time.struct time(tm year=2011, tm mon=6,

tm mday=17, tm hour=22, tm min=31, tm sec=42,
tm wday=4, tm yday=168, tm isdst=0)

>>> time.gmtime()[0]

2011

>>> time.gmtime().tm year

2011

Migrating to “heavy-weight” objects is boring

class Color(tuple):
def new (cls, red, green, blue):
return tuple. new (cls, (red, green, blue))
@property
def red(self):
return self[0] o .
@property ... and surprisingly tricky!
def green(self):
return self[1]
@property
def blue(self):
return self[2]

>>> color = Color (255, 127, 0)

>>> color.red, color.green, color.blue

(255, 127, 0)

>>> periwlinkle = Color(red=142,
green=130, blue=254)

>>> periwlinkle.blue

254

>>>
>>>
>>>

142
>>>

130
>>>

collections.namedtuple

from collections import namedtuple
Color = namedtuple("Color", "red green blue'")

Color (142, 130,

Color(red=142,

254) .red

green=130,

blue=254).green

I“

Special “ asdict” and“_replace” methods
>>> orange = Color(0xf9, 0x73, 0x06)

>>> orange

Color(red=249, green=115, blue=6)

>>> orange. asdict()

OrderedDict([('red’', 249), ('green', 115), ('blue’', 6)])
>>> orange. asdict()["blue"]
6

>>> orange. replace(green=99)
Color(red=249, green=99, blue=6)

Remember - it’s still a tuple!

>>> black = Color(0, 0, 0)
>>> black.count(0)
3

Even more list-like collections in Python

- array module for homogenous types

>>> x = array.array("i", (7,4,7))
>>> x.,count(7)

2
>>>

- queue module for threaded programming

Queue, LifoQueue and PriorityQueue

(deque is also thread-safe)

Set

Sets are an unsorted collection of elements

Duplicates are ignored
= elements must implement ___eq

Sets are implemented as a hash table.
= elements must implement __hash

>>> values = {3, 1, 4, 1, 5, 9}

>>> values

{91 3, 4, 5,]-}

>>> 1f username in {"root", "admin", "dalke"}:
auth.grant all()

Sets are great for uniqueness

How many unique words do | have
if | ignore capitalization!?

>>> len(words)

234936
>>> len(set(word.lower() for word in words))
233614
>>2>

“Is that Polish?” “It was an August day.”

“Is that polish?” “It was an august day.”

Only print one word of each given

>>> geen length = set()
>>> for word in words:

n = len(word)

if n in seen length:
continue

seen length.add(n)

print (word)

length

A

Aani

Aaron

Aaronic

Aaronical

Aaronite

Ab

Ababua

Abdominales

Abe

Abencerrages
Aberdonian
Acanthocephala
Acanthocereus
Acanthopterygii
Achromobacterieae
Actinomycetaceae
Archaeopterygiformes
Australopithecinae
Chlamydobacteriales
Prorhipidoglossomorpha
Pseudolamellibranchia
Pseudolamellibranchiata

formaldehydesulphoxylate
>>>

Sets are great for uniqueness

(though not essential)

>>> len(dict.fromkeys (word.lower() for word in words))
233614

Sets are more than “value-less dictionaries”

Set operations

>>> hamlet - {"tO","be","Or","nOt","tO","be"}
>>> hamlet
{'not', 'be', 'or', 'to'}

>>> hamlet - {"to","be","me"}
{'I‘lOt', 'Or'}

>>> hamlet & {"to","be","me"}
{'be', ltol}

>>> hamlet "~ {"to","be","me"}

{'not', 'or', 'me'}
>>> hamlet.union("to be me".split())
{'not', 'be', 'or', 'me', 'to'}

>>> hamlet.issubset(
"to be me and not you or him".split())
True

Inverted Index

Make a mapping of each letter [a-z] to a set.
The set for “a” contains all words which have an “a” or “A”

inverted = {

¢¢ 99

. {'fawn’, 'cisandine’, 'Ichthyoidea’, 'unsupportable’, 'unattackat

“ .,

. {'fawn’, 'cisandine’, 'nunnery', 'unsupportable’, 'unattackable'

¢€¢_Y)

s”’: {'cisandine, 'Phasiron’, 'unsupportable', 'amirship', 'smurry’,

Make the Inverted Index

import string
inverted = {}

for ¢ in string.ascii lowercase:
inverted[c] = set|()

for word in words:
for ¢ in word.lower():
inverted[c].add(word)

Which words contain a“q” but no “u’?

>>> inverted["q"] - inverted["u"]

{'goph', 'shoqg', 'gintar', 'gasida', 'gere', 'Iraq',
'Q', 'migra', 'q', 'Iraqgi', 'Qoheleth', 'nastaliq’,
'qeri', 'Iraqian', 'Pontacq’}

>>>

° o ¢ 9% ¢) (S
Which words contain ‘q’,'x’, and ‘z’?
>>> inverted["q"] & inverted["x"] & inverted["z"]
{'extraquiz', 'benzoquinoxaline', 'benzofuroquinoxaline', 'quixotize'}

>>> inverted["qg"].intersection(inverted["x"], inverted["z"])
{'extraquiz', 'benzoquinoxaline', 'benzofuroquinoxaline', 'quixotize'}

>>> set.lntersection(*(inverted[c] for ¢ in "gxz"))
{'extraquiz', 'benzoquinoxaline', 'benzofuroquinoxaline', 'quixotize'}

What are the 10 longest words which
contain a'y’ but no other vowel!

>>> import heapqg

>>> heapg.nlargest (10, inverted["y"] -
set.union(*(inverted[c] for ¢ in "aeiuo")),

.. key=1len)

['symphysy', 'gypsyry', 'nymphly', 'gypsyfy', 'lymphy’,

'rhythm', 'Flysch', 'syzygy', 'strych', 'sylphy']

>>>

Frozenset

“Constant” set you can use as keys in a dictionary.

| haven’t found an example of where | should use a
frozenset instead of a tuple with ordered elements.

Dictionary

Dictionaries are an unsorted mapping of keys to values

Dictionaries are implemented as a hash table

= keys must implement __eq and ___hash

Brandon Craig Rhodes “The Mighty Dictionary” at PyCon 2010

http://python.mirocommunity.org/video/ 159 | /pycon-20 | 0-the-mighty-dictiona

__missing___ method

import socket

class DNSLookup(dict):
def missing (self, hostname):
print("Looking up", hostname)
try:
addr = socket.gethostbyname (hostname)
except socket.error:
addr = None
self[hostname] = addr
return addr

>>> dns_ lookup = DNSLookup()

>>> dns lookup|["dalkescientific.com"]

Looking up dalkescientific.com

'66.39.47.217"

>>> dns_ lookup["unknown.dalkescientific.com"]
Looking up unknown.dalkescientific.com

>>> dns_ lookup|["python.org"]

Looking up python.org

'82.94.164.162"

>>> dns lookup|["dalkescientific.com"]
'66.39.47.217"

>>> dns_lookup
{'unknown.dalkescientific.com': None, 'python.org': '82.94.164.162",
'dalkescientific.com': '66.39.47.217'}

class DefaultDict(dict):

def 1nit (self, callable):

self.callable =

callable

def missing (self, name):
item = self.callable()

self[name] = item
return i1tem

>>> int ()
0

>>> d["a"]

0

>>> d["b"] += 1
>>> d["b"]

1

>>> d

{'a': 0, 'b': 1}
>>>

>>> d = DefaultDict(int)

collections.defaultdict

import string
from collections import defaultdict

d = defaultdict(int)

with open("/usr/share/dict/words") as f:

for line in f£f:
for ¢ 1n line.lower():

dic] += 1

>>> scale = max(d[c] for ¢ 1n string.ascii lowercase)
>>> for ¢ 1n string.asclii lowercase:
. o print(c,"="*(d[c]*75//scale+l))

Reverse a dictionary

The original dictionary may have duplicate values.
Result will map value to list of corresponding keys.

def reverse dict(d):
reversed = defaultdict(list)
for k,v 1n d.items():
reversed[v].append(k)

return dict(reversed) < | return a

normal dict!

>>> lengths = dict((word, len(word))
.. for word in "to be or not to be".split())

>>> lengths

{'not': 3, 'to': 2, 'or': 2, 'be': 2}

>>> print(reverse dict(lengths))

{2: ['to', 'or', 'be']l, 3: ['not']}

>>>

collections.Counter

Counting elements is a very common task

>>> from collections import Counter

>>> letter counter = Counter("bookkeeper")

>>> letter counter

Counter({'e': 3, 'k': 2, '0': 2, 'b': 1, 'p': 1, 'r': 1})
>>> i1sinstance(letter counter, dict)

True

>>> letter counter.most common(3)

[('ell 3)’ ('kll 2)’ ('O'l 2)]

>>> list(letter counter.elements())

[IbI’ IeI, lel, lel, Ik|, lkl’ |O|, IOI’ lp, rl]

>>> letter counter - Counter("beekeeper")
Counter({'o': 2, 'k': 1})
>>>

Counting all letters in the word list

from collections import Counter
letters = Counter()
with open("/usr/share/dict/words") as f:

for line 1in f:
letters.update(line.strip().lower())

>>> letters.most common(10)

[('e', 234803), ('i', 200613), ('a', 198938), ('o',
170392), ('r', 160491), ('n', 158281), ('t', 152570), ('s',
139238), ('1', 130172), ('c', 103307)]

>>> letters.most common()[-1]

('3, 3075)

>>>

OrderedDict

Dictionaries are unordered
#FPS1

#num bits=166
#type=ChemFP-RDMACCS-RDKit/1
#source=Compound 007700001 007725000.sdf.gz

#date=2011-05-26T23:28:07

0000800200308360606840a03705405bb2elabealf 7700001
0000800010040000c0b2007fal7275e89dfaf7ff1f 7700003

headers = {}

with open(input filename) as f:
assert next(f) == "#FPS1\n"
for line in f£f:
if line.startswith("#"):
key, value = line[l:-1].split("=", 1)
headers[key] = wvalue
else:
break

#FPS1

#num bits=166

#type=ChemFP-RDMACCS-RDKit/1
#source=Compound 007700001 007725000.sdf.gz
#date=2011-05-26T23:28:07

| can’t reproduce the input order

>>> headers
{'date': '2011-05-26T23:28:07', 'source':

' Compound_007700001 007725000.sdf.gz' , 'num bits': '166', 'type':
'ChemFP-RDMACCS-RDKit/1"'}
>>>
>>> for k, v i1n headers.items():
print("#", k, "=", v, sep="")

#date=2011-05-26T23:28:07
#source=Compound 007700001 007725000.sdf.gz
#num bits=166

#type=ChemFP-RDMACCS-RDKit/1

>>>

OrderedDict to the rescue

>>> from collections import OrderedDict
>>>
>>> d = OrderedDict()
>>> d["first"] =1
>>> d["second"] = 2
>>> d["third"] = 3
>>> d
OrderedDict ([('first', 1), ('second', 2), ('third', 3)])
>>> for k,v in d.items():
print(k,v) compare to a regular dict
first 1 >>> d = {}
second 2 >>> d["first"] =1
third 3 >>> d["second"] = 2
>>> d["third"] = 3

>>> for k,v in d.items():
print(k,v)

second 2
third 3

first 1
>>>

“cast in order of appearance”

Julius Caesar in XML form

<SPEAKER>FLAVIUS</SPEAKER>

<LINE>Hence! home, you idle creatures get you home:</LINE>
<LINE>Is this a holiday? what! know you not,</LINE>
<LINE>Being mechanical, you ought not walk</LINE>
<LINE>Upon a labouring day without the sign</LINE>
<LINE>Of your profession? Speak, what trade art thou?</LINE>

</SPEECH>

<SPEECH>

<SPEAKER>First Commoner</SPEAKER>

<LINE>WVhy, sir, a carpenter.</LINE> FLAVI US

</SPEECH> First Commoner
<SPEECH> MARULLUS
<SPEAKER>MARULLUS</SPEAKER>

<LINE>Where is thy leather apron and thy rule?</LINE>

<LINE>What dost thou with thy best apparel on?</LINE>
<LINE>You, sir, what trade are you?</LINE>
</SPEECH>

Speaking roles in Julius
Caesar in order

from xml.etree import ElementTree
from collections import OrderedDict

tree = ElementTree.parse(']j caesar.xml")
speakers = tree.findall("//SPEAKER")
ordered speakers = OrderedDict.fromkeys(

node.text for node 1in speakers)

for speaker in ordered speakers:
print (speaker)

(Should there be an OrderedSet?)

FLAVIUS

First Commoner
MARULLUS
Second Commoner
CAESAR
CASCA
CALPURNIA
ANTONY
Soothsayer
BRUTUS
CASSIUS
CICERO
CINNA
LUCIUS
DECIUS BRUTUS
METELLUS CIMBER
TREBONIUS
PORTIA
LIGARIUS
Servant
PUBLIUS
ARTEMIDORUS
POPILIUS
Citizens

First Citizen
Second Citizen
Third Citizen

All

Fourth Citizen
Several Citizens
CINNATHE POET
OCTAVIUS
LEPIDUS
LUCILIUS
PINDARUS

First Soldier
Second Soldier
Third Soldier
Poet

MESSALA
TITINIUS
VARRO
GHOST
CLAUDIUS
Messenger
CATO

CLITUS
DARDANIUS
VOLUMNIUS
STRATO

More details found in:

= the Python documentation

The Python
Standard Library

= Doug Hellmann’s new book by Example

Read the preview chapter
(then go ahead and buy it)

= Raymond Hettinger's presentation

"Fun with Python's Newer Tools" at PyCon 201 |

Python’s Other Collection Types
and Algorithms

Questions!

Andrew Dalke
dalke@dalkescientific.com f etkasctontit

