Python MapReduce Programming with Pydoop

Simone Leo

Distributed Computing — CRS4
http://www.crs4.it

EuroPython 2011

LB ICRS

Simone Leo Python MapReduce Programming with Pydoop

http://www.crs4.it

Acknowledgments

@ Part of the MapReduce tutorial is based upon: J. Zhao, J.
Pjesivac-Grbovic, “MapReduce: The programming model
and practice”, SIGMETRICS’09 Tutorial, 2009.
http://research.google.com/pubs/pub36249.html

@ “The Free Lunch is Over” is a well-known article by Herb
Sutter, available online at

http://www.gotw.ca/publications/concurrency—-ddj.htm

@ Pygments rules!

LB ICRS

Simone Leo Python MapReduce Programming with Pydoop

http://research.google.com/pubs/pub36249.html
http://www.gotw.ca/publications/concurrency-ddj.htm

Intro: 1. The Free Lunch is Over

10,000,000

1,000,000

Dual-Core Itanium 2 /

100,000

Intel CPU Trends ’

(sources: Intel, Wikipedia, K. Olukotun)

10,000

m/

1,000

AA_A.
"SE
. . 4t

0

@ Clock Speed (MiKz)
aPower (W)
@ pert/Clock (1)

1970

1975 1980 1985 1990 1995 2000 2005 2010

www.gotw.ca

@ CPU clock speed reached
saturation around 2004
@ Multi-core architectures
e Everyone must go
parallel
@ Moore’s law reinterpreted
e number of cores per
chip doubles every 2y
e clock speed remains
fixed or decreases
e must rethink the design
of our software

@

Simone Leo MapReduce Programming with Pydoop

Intro: 2. The Data Deluge

A @ data-intensive
) _ applications
satellites high-energy physics i

e 1 high-throughput
sequencer: several
TB/week

@ Hadoop to the rescue!

sciencematters.

facebook

upload.wikimedia.org

social networks

www.imagenes-bio.de

DNA sequencing

LB ICRS

Simone Leo MapReduce Programming with Pydoop

Intro: 3. Python and Hadoop

@ Hadoop: a DC framework for data-intensive applications
e Open source Java implementation of Google’s MapReduce
and GFS
@ Pydoop: API for writing Hadoop programs in Python
e Architecture
e Comparison with other solutions
e Usage
e Performance

LB ICRS

Simone Leo Python MapReduce Programming with Pydoop

Outline

0 MapReduce and Hadoop
@ The MapReduce Programming Model
@ Hadoop: Open Source MapReduce

9 Hadoop Crash Course

Q Pydoop: a Python MapReduce and HDFS API for Hadoop
@ Motivation
@ Architecture
@ Usage

LB ICRS

Simone Leo Python MapReduce Programming with Pydoop

MapReduce and Hadoop The MapReduce Programming Model

Hadoop: Open Source MapReduce

Outline

0 MapReduce and Hadoop
@ The MapReduce Programming Model
@ Hadoop: Open Source MapReduce

LB ICRS

Simone Leo MapReduce Programming with Pydoop

MapReduce and Hadoop The MapReduce Programming Model

Hadoop: Open Source MapReduce

Outline

0 MapReduce and Hadoop
@ The MapReduce Programming Model

LB ICRS

Simone Leo MapReduce Programming with Pydoop

MapReduce and Hadoop The MapReduce Programming Model

Hadoop: Open Source MapReduce

What is MapReduce?

@ A programming model for large-scale distributed data
processing
@ Inspired by map and reduce in functional programming
e Map: map a set of input key/value pairs to a set of
intermediate key/value pairs
e Reduce: apply a function to all values associated to the
same intermediate key; emit output key/value pairs

@ An implementation of a system to execute such programs

e Fault-tolerant (as long as the master stays alive)
e Hides internals from users
e Scales very well with dataset size

Simone Leo Python MapReduce Programming with Pydoop

MapReduce and Hadoop

The MapReduce Programming Model
Hadoop: Open Source MapReduce

MapReduce’s Hello World: Wordcount

[the quick brown[fox ate the lazy[green fox |

Map

quick, 1 green, 1 Shuffle &
ate, 1 the, 1 Sort
b 1 \
rown fox, 1 lazy, 1
Reduce
quick, 1 the, 2
brown, 1 lazy, 1
fox, 2 green, 1
ate, 1

Simone Leo

MapReduce and Hadoop The MapReduce Programming Model
Hadoop: Open Source MapReduce

Wordcount: Pseudocode

map (String key, String value):
// key: does not matter in this case
// value: a subset of input words
for each word w in value:
Emit (w, "1");

reduce (String key, Iterator values):
// key: a word
// values: all values associated to key
int wordcount = 0;
for each v in values:
wordcount += Parselnt (v);
Emit (key, AsString(wordcount));

LB ICRS

Simone Leo Python MapReduce Programming with Pydoop

MapReduce and Hadoop The MapReduce Programming Model

Hadoop: Open Source MapReduce

Mock Implementation — mockmr . py

from itertools import groupby
from operator import itemgetter

def _pick last (it):
for t in it:

yield t[-1]
def mapreduce (data, mapf, redf):
buf = []
for line in data.splitlines{():
for ik, iv in mapf ("foo", line):
buf.append((ik, iv))
buf.sort ()

for ik, values in groupby (buf, itemgetter (0)):
for ok, ov in redf (ik, _pick_last (values)):
print ok, ov

Simone Leo

MapReduce and Hadoop The MapReduce Programming Model

Hadoop: Open Source MapReduce

Mock Implementation — mockwc . py

from mockmr import mapreduce

DATA = """the quick brown
fox ate the
lazy green fox

nnn

def map_ (k, v):
for w in v.split():
yield w, 1

def reduce_ (k, values):
yield k, sum(v for v in values)

if _ name__ == "__main__":
mapreduce (DATA, map_, reduce_)

Simone Leo

MapReduce and Hadoop

The MapReduce Programming Model
Hadoop: Open Source MapReduce

MapReduce: Execution Model

User
Program

" (1) fork

(1) fork (@) fork

(Z)rg;%ign (2) assign
- reduce:
split 0 Mapper g)
(6) write
split 1 @ tocal Reducer]
" (3) read write
split 2 Mapper
split 3
w Mapper
Input Intermediate files Output
(DFS) (on local disks) (DFS)

adapted from Zhao et al., MapReduce: The programming model and practice, 2009 — see acknowledgments

Simo MapReduce Programming with Pydoop

MapReduce and Hadoop

The MapReduce Programming Model
Hadoop: Open Source MapReduce

MapReduce vs Alternatives — 1

Programming model
Declarative

Procedural

Flat raw files Structured
Data organization

adapted from Zhao et al., MapReduce: The programming model and practice, 2009 — see acknowledgments

Simone Leo Py MapReduce Pro

MapReduce and Hadoop

The MapReduce Programming Model
Hadoop: Open Source MapReduce

MapReduce vs Alternatives — 2

MPI

MapReduce

DBMS/SQL

programming model

message passing

map/reduce

declarative

data organization

no assumption

files split into blocks

organized structures

data type any (k,v) string/protobuf | tables with rich types
execution model | independent nodes | map/shuffle/reduce transaction
communication high low high
granularity fine coarse fine
usability steep learning curve| simple concept

runtime: hard to debug

key selling point

run any application

huge datasets

interactive querying

@ There is no one-size-fits-all solution
@ Choose according to your problem’s characteristics

adapted from Zhao et al., MapReduce: The programming model and practice, 2009 — see acknowledgments

Simone Leo

@

MapReduce Programming with Pydoop

MapReduce and Hadoop The MapReduce Programming Model

Hadoop: Open Source MapReduce

MapReduce Implementations / Similar Frameworks

@ Google MapReduce (C++, Java, Python)

e Based on proprietary infrastructures (MapReduce,
GFS, ...) and some open source libraries

@ Hadoop (Java)
e Open source, top-level Apache project
e GFS — HDFS
e Used by Yahoo, Facebook, eBay, Amazon, Twitter . ..
@ DryadLINQ (C# + LINQ)
o Not MR, DAG model: vertices=programs, edges=channels
e Proprietary (Microsoft); academic release available
@ The “small ones”
@ Starfish (Ruby), Octopy (Python), Disco (Python + Erlang)

LB ICRS

Simone Leo Python MapReduce Programming with Pydoop

MapReduce and Hadoop The MapReduce Programming Model

Hadoop: Open Source MapReduce

Outline

0 MapReduce and Hadoop

@ Hadoop: Open Source MapReduce

LB ICRS

Simone Leo MapReduce Programming with Pydoop

MapReduce and Hadoop The MapReduce Programming Model

Hadoop: Open Source MapReduce

Hadoop: Overview

@ Scalable

e Thousands of nodes

o Petabytes of data over 10M files

e Single file: Gigabytes to Terabytes
@ Economical

e Open source

e COTS Hardware (but master nodes should be reliable)
@ Well-suited to bag-of-tasks applications (many bio apps)

e Files are split into blocks and distributed across nodes
e High-throughput access to huge datasets
o WORM storage model

Simone Leo Python MapReduce Programming with Pydoop

MapReduce and Hadoop The MapReduce Programming Model

Hadoop: Open Source MapReduce

Hadoop: Architecture

Client @ Client sends Job request
o Job Request
\ to Job Tracker
HDFS Master MR Master @ Job Tracker queries
@4—; Job Tracker Namenode about physical

data block locations

| @ Input stream is split among
[Datanede ‘ [Datanede } Datanede } the desired number of map
oog 00 000 tasks
7 HDFS Seves e ————— @ Map tasks are scheduled
Task Tracker Task Tracker Task Tracker C|osest to Where data
I — MR Slaves reside

LB ICRS

Simone Leo Python MapReduce Programming with Pydoop

MapReduce and Hadoop

The MapReduce Programming Model
Hadoop: Open Source MapReduce

Hadoop Distributed File System (HDFS)

file name "a"

. e)
et e ! ‘ @ Each block is
block IDs, . .
datanodes Secondary | replicated n times
Namenode
namespace checkpointing (3 by defaUIt)
elps namenode with logs .
n:t Iapnamenodedreplgcemgent o One repllca On the
R A U YRR . same rack, the

/‘Q.} ‘ b@% ..Q others on different

racks
1 \ Datanode 5
\ /

@ You have to provide
\0.0J \OOO\ OOO

network topology
Datanode 2 Datanode 4 \ Datanode 6

read
data

\ / ~

G Racks : LEUCRS

Simone Leo MapReduce Programming with Pydoop

MapReduce and Hadoop The MapReduce Programming Model

Hadoop: Open Source MapReduce

Wordcount: (part of) Java Code

public static class TokenizerMapper

extends Mapper<Object, Text, Text, IntWritable> {

private final static IntWritable one = new IntWritable(1l);

private Text word = new Text ();

public void map (Object key, Text value, Context context

) throws IOException, InterruptedException ({
StringTokenizer itr = new StringTokenizer (value.t ring());
while (itr.hasMoreTokens()) {word.set (itr.nextToken());
context.write (word, one);}

+}
public static class IntSumReducer
extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();
public void reduce (Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {sum += val.get ();}
result.set (sum) ;
context.write (key, result);

Simone Leo

MapReduce and Hadoop The MapReduce Programming Model

Hadoop: Open Source MapReduce

Other Optional MapReduce Components

@ Combiner (local Reducer)
@ RecordReader
e Translates the byte-oriented view of input files into the
record-oriented view required by the Mapper
o Directly accesses HDFS files
e Processing unit: InputSplit (filename, offset, length)
@ Partitioner
e Decides which Reducer receives which key
e Typically uses a hash function of the key
@ RecordWriter

o Writes key/value pairs output by the Reducer
e Directly accesses HDFS files

Simone Leo Python MapReduce Programming with Pydoop

Hadoop Crash Course

Outline

9 Hadoop Crash Course

Simone Leo MapReduce Progr.

Hadoop Crash Course

Hadoop on your Laptop in 10 Minutes

@ Download from
www.apache.org/dyn/closer.cgi/hadoop/core
@ Unpack to /opt, then set a few vars:
export HADOOP_HOME=/opt/hadoop-0.20.2
export PATH=$HADOOP_HOME/bin:S${PATH}
@ Setup passphraseless ssh:
ssh-keygen -t dsa -P '’ —-f ~/.ssh/id_dsa
cat ~/.ssh/id_dsa.pub >>~/.ssh/authorized_keys
@ in SHADOOP_HOME/conf/hadoop—-env. sh, set
JAVA_HOME to the appropriate value for your machine

Simone Leo Python MapReduce Programming with Pydoop

www.apache.org/dyn/closer.cgi/hadoop/core

Hadoop Crash Course

Additional Tweaking — Use as Non-Root

@ Assumption: user is in the user group
mkdir /var/tmp/hdfs /var/log/hadoop
chown :users /var/tmp/hdfs /var/log/hadoop
chmod 770 /var/tmp/hdfs /var/log/hadoop
@ Edit SHADOOP_HOME/conf/hadoop-env. sh:
export HADOOP_LOG_DIR=/var/log/hadoop
@ Edit SHADOOP _HOME/conf/hdfs-site.xml:
<property>
<name>dfs.name.dir</name>
<value>/var/tmp/hdfs/nn</value>
</property>
<property>
<name>dfs.data.dir</name>
<value>/var/tmp/hdfs/data</value>
</property>

Simone Leo MapReduce Progr.

Hadoop Crash Course

Additional Tweaking — MapReduce

@ Edit SHADOOP_HOME /conf/mapred-site.xml:

<property>
<name>mapred.system.dir</name>
<value>/var/tmp/hdfs/system</value>

</property>

<property>
<name>mapred.local.dir</name>
<value>/var/tmp/hdfs/tmp</value>

</property>

<property>
<name>mapred.tasktracker.map.tasks.maximum</name>
<value>2</value>

</property>

<property>
<name>mapred.tasktracker.reduce.tasks.maximum</name>
<value>2</value>

</property>

<property>
<name>mapred.child. java.opts</name>
<value>-Xmx512m</value>

</property> W ICRS

Simone Leo

Hadoop Crash Course

Start your Pseudo-Cluster

@ Namenode format is required only on first use

hadoop namenode —-format
start—-all.sh

firefox http://localhost:50070 &
firefox http://localhost:50030 &

@ localhost:50070: HDFS web interface
@ localhost:50030: MapReduce web interface

Simone Leo Python MapReduce Programming with Pydoop

Hadoop Crash Course

Web Interface — HDFS

NameNode 'neuron.crs4.it:9000'

Started: Mon Jul 19 12:26:22 CEST 2010
Version: 0.20.2, r911707

Compiled: Fri Feb 19 08:07:34 UTC 2010 by chrisdo
Upgrades: There are no upgrades in progress.

Browse the filesystem
Namenode Logs

Cluster Summary

81 files and directories, 52 blocks = 133 total. Heap Size is 53.19 MB / 888.94 MB (5%)

Configured Capacity 19.69 GB
DFS Used : 2.13MB
Non DFS Used : 12.87GB
DFS Remaining : 6.81 GB
DFS Used% : 0.01 %
DFS Remaining% : 3461 %
Live Nodes : 1
Dead Nodes : o]

LIRS

MapReduce Programming with Pydoop

Hadoop Crash Course

Web Interface — MapReduce

localhost Hadoop Map/Reduce Administration

State: RUNNING

Started: Mon Jul 19 12:26:22 CEST 2010

Version: 0.20.2, r911707

FriFeb 19 08:07:34 UTC 2010 by chrisdo
1 201007191226

Cluster Summary (Heap Size is 53.19 MB/888.94 MB)

|Maps ‘Reduces ‘Total Submissions ‘Nodes ‘ Map Task Capacity | Reduce Task Capacity ‘Avg. Tasks/Node ‘
o o lo B |2 |2 | 4.00 |

Scheduling Information

Queue Name | Scheduling Information

defaul N/A

Filter (Jobid, Priority, User, Name)
Example: 'user:smith 3200" will filter by 'smith' enly in the user field and '3200' in all fields

Running Jobs

MapReduce Programming with Pydoop

Hadoop Crash Course

Run the Java Word Count Example

Wait until HDFS is ready for work

hadoop dfsadmin -safemode wait

Copy input data to HDFS

wget http://www.gutenberg.org/cache/epub/11/pgll.txt
hadoop fs -put pgll.txt alice.txt

Run Word Count

hadoop Jjar $HADOOP_HOME/xexamplesx.Jjar wordcount alice.txt output

Copy output back to local fs

hadoop fs —-get output{,}

sort -rn -k2 output/part-r-00000 | head -n 3

the 1664

and 780

to 773

1s output/_logs/history
localhost_1307814843760_3job_201106111954_0001_conf.xml
localhost_1307814843760_7job_201106111954_0001_simleo_word+count

Simone Leo

Hadoop Crash Course

Cool! | Want to Develop my own MR Application!

@ The easiest path for beginners is Hadoop Streaming

e Java package included in Hadoop

e Use any executable as the mapper or reducer
o Read key-value pairs from standard input

e Write them to standard output

o Text protocol: records are serialized as k\tv\n

@ Usage:
hadoop jar \
SHADOOP_HOME/contrib/streaming/+streamingx.jar \
-input myInputDirs \
—output myOutputDir \
-mapper my_mapper \
-reducer my_reducer \
-file my_mapper \
-file my_reducer \
-jobconf mapred.map.tasks=2 \
—jobconf mapred.reduce.tasks=2

LB ICRS

Simone Leo MapReduce Programming with Pydoop

Hadoop Crash Course

WC with Streaming and Python Scripts — Mapper

#!/usr/bin/env python
import sys
for line in sys.stdin:
for word in line.split():
print "%$s\tl" % word

LB ICRS

Simone Leo Python MapReduce Programming with Pydoop

Hadoop Crash Course

WC with Streaming and Python Scripts — Reducer

#!/usr/bin/env python

import sys

def serialize (key, value):
return "%s\t%d" % (key, value)

def deserialize(line):
key, value = line.split ("\t", 1)
return key, int (value)

def main():
prev_key, out_value = None, 0
for line in sys.stdin:
key, value = deserialize(line)
if key != prev_key:
if prev_key is not None:
print serialize (prev_key, out_value)

out_value = 0
prev_key = key
out_value += value
print serialize (key, out_value)
wg CRST
if _ name__ == "__main__": main()

Simone Leo

Motivation
Architecture
Pydoop: a Python MapReduce and HDFS API for Hadoop Usage

Outline

Q Pydoop: a Python MapReduce and HDFS API for Hadoop
@ Motivation
@ Architecture
@ Usage

LB ICRS

Simone Leo Python MapReduce Programming with Pydoop

Motivation
Architecture
Pydoop: a Python MapReduce and HDFS API for Hadoop Usage

Outline

Q Pydoop: a Python MapReduce and HDFS API for Hadoop
@ Motivation

LB ICRS

Simone Leo MapReduce Programming with Pydoop

Motivation
Architecture
Pydoop: a Python MapReduce and HDFS API for Hadoop Usage

MapReduce Development with Hadoop

@ Java: native

@ C/C++: APIs for both MR and HDFS are supported by
Hadoop Pipes and included in the Hadoop distribution
@ Python: several solutions, but do they meet all of the
requirements of nontrivial apps?
e Reuse existing modules, including C/C++ extensions
NumPy / SciPy for numerical computation
Specialized components (RecordReader/Writer, Partitioner)
HDFS access

LB ICRS

Simone Leo Python MapReduce Programming with Pydoop

Motivation
Architecture
Pydoop: a Python MapReduce and HDFS API for Hadoop Usage

Python MR: Hadoop-Integrated Solutions

Hadoop Streaming Jython

@ awkward programming @ incomplete standard library
style @ most third-party packages

@ can only write mapper and are only compatible with
reducer scripts (no CPython
RecordReader, etc.) @ cannot use C/C++

@ no HDFS extensions

@ can only process text data @ typically one or more
streams (lifted in 0.21+) releases behind CPython

W ICRS

Simone Leo Python MapReduce Programming with Pydoop

Motivation
Architecture
Pydoop: a Python MapReduce and HDFS API for Hadoop Usage

Python MR: Third Party Solutions

v N/ N Hadoop YR
\Hadoopy/\ \Dumbo/\ »Streaming S Disco /‘
R e B\
. Happy F— Jython (Octopy)
A / A /
Last update: Aug 2009 Last update: Apr 2008
Hadoop-based Non-Hadoop MR

@ Hadoop-based: same limitations as Streaming/Jython,
except for ease of use

@ Other implementations: not as mature/widespread

LB ICRS

Simone Leo MapReduce Programming with Pydoop

Motivation
Architecture
Pydoop: a Python MapReduce and HDFS API for Hadoop Usage

Python MR: Our Solution

Pydoop —http://pydoop.sourceforge.net

@ Access to most MR components, including RecordReader,
RecordWriter and Partitioner

@ Get configuration, set counters and report status

@ Programming model similar to the Java one: you define
classes, the MapReduce framework instantiates them and
calls their methods

@ CPython — use any module

@ HDFS API
LB ICRS

Simone Leo Python MapReduce Programming with Pydoop

http://pydoop.sourceforge.net

Motivation
Architecture

Pydoop: a Python MapReduce and HDFS API for Hadoop Usage

Summary of Features

Streaming | Jython | Pydoop
C/C++ Ext Yes No Yes
Standard Lib Full Full
MR API No Full
Java-like FW No Yes Yes
HDFS No Yes Yes

(*) you can only write the map and reduce parts as executable scripts.

Simone Leo Python MapReduce Programming with Pydoop

Motivation
Architecture
Pydoop: a Python MapReduce and HDFS API for Hadoop Usage

Outline

Q Pydoop: a Python MapReduce and HDFS API for Hadoop

@ Architecture

LB ICRS

Simone Leo MapReduce Programming with Pydoop

Motivation
Architecture
Pydoop: a Python MapReduce and HDFS API for Hadoop Usage

Hadoop Pipes

Java Hadoop Framework
PipesMapRunner PipesReducer
o App: separate process
“8%3&%1“ Sr%?‘ic'éﬂ ischucict gl vl @ Communication with Java
— framework via persistent
reacss sockets
mapper .
reducer @ The C++ app provides a
combiner record factory used by the
partitioner] framework tO Create MR
child process
child process Components
C++ Application
wg CRST

Simone Leo Python MapReduce Programming with Pydoop

Motivation
Architecture
Pydoop: a Python MapReduce and HDFS API for Hadoop Usage

Integration of Pydoop with the C/C++ API

@ Integration with Pipes (C++):

Hadoop Java Framework e Method calls flow from the
e framework through the C++ and
the Pydoop API, ultimately
C libhdfs reaching user-defined methods
C++ pipes (JNI wrapper)

o Results are wrapped by Boost
and returned to the framework

@ Integration with libhdfs (C):

boost.python

virtual method
< rualmefod
invocation
et b
object
function
—function
call
boost.python
=
object

_pipes ext module _hdfs ext module e Function calls initiated by
Pydoop
Pure Python Modules e Results wrapped and returned
User Application as Python objects to the app
WO ICRS

Simone Leo Python MapReduce Programming with Pydoop

Motivation
Architecture
Pydoop: a Python MapReduce and HDFS API for Hadoop Usage

Outline

Q Pydoop: a Python MapReduce and HDFS API for Hadoop

@ Usage

LB ICRS

Simone Leo MapReduce Programming with Pydoop

Motivation
Architecture

Pydoop: a Python MapReduce and HDFS API for Hadoop Usage

Python Wordcount, Full Program Code

#!/usr/bin/env python
import pydoop.pipes as pp

class Mapper (pp.Mapper) :
def map(self, context):
words = context.getInputValue () .split ()
for w in words:
context.emit (w, "1")

class Reducer (pp.Reducer) :
def reduce(self, context):

N

s =0
while context.nextValue() :

s += int (context.getInputValue())
context.emit (context.getInputKey (), str(s))

if name = "_main__ ":

pp.runTask (pp.Factory (Mapper, Reducer))

Simone Leo

Motivation
Architecture
Pydoop: a Python MapReduce and HDFS API for Hadoop Usage

Status Reports and Counters

class Mapper (pp.Mapper) :

def _ _init_ (self, context):
super (Mapper, self)._ _init__ (context)
context.setStatus ("initializing")
self.inputWords = context.getCounter ("WORDCOUNT", "INPUT_WORDS")

def map(self, context):
words = context.getInputValue () .split ()
for w in words:
context.emit (w, "1")
context.incrementCounter (self.inputWords, len(words))

Simone Leo

Motivation
Architecture
Pydoop: a Python MapReduce and HDFS API for Hadoop Usage

Status Reports and Counters: Web Ul

Task Complete ‘ Status ‘ Start Time Finish Time

task 201105051838 0001 _m_000000 [100.00% linitializing | 5-May-2011 18:53:35 | 5-May-2011 18:53:4°

task_201105051838_0001_m_000001 | 100.00% initializing | 5-May-2011 18:53:35 | 5-May-2011 18:53:47

Counter Map |Reduce | Total

OUTPUT_WORDS 7,318 6,014 | 13,332
WORDCOUNT

INPUT_WORDS 29,459 0| 29,459

Launched reduce tasks 0 Q 2
Job Counters Launched map tasks 0 0 2

Data-local map tasks 0 4] 2

FILE_BYTES_READ 0| 84,210 | 84,210
FileSystemCounters

FILE_BYTES_WRITTEN 84,334 | 84,210 | 168,544

Reduce input groups 0 6,014 6,014

Combine output records 0 0 0

Map ir recor’ 2 4] 2

- T = LB ICRS

Motivation
Architecture
Pydoop: a Python MapReduce and HDFS API for Hadoop Usage

Optional Components: Record Reader

import struct, pydoop.hdfs as hdfs

class Reader (pp.RecordReader) :
def _ init_ (self, context):
super (Reader, self).__init__ (context)
self.isplit = pp.InputSplit (context.getInputSplit ())
self.file = hdfs.open(self.isplit.filename)
self.file.seek(self.isplit.offset)
self.bytes_read = 0
if self.isplit.offset > 0:
discarded = self.file.readline() # read by prev. split reader
self.bytes_read += len(discarded)

def next (self): # return: (have_a_record, key, ue)
if self.bytes_read > self.isplit.length: # end of input split
return (False, "", "M)
key = struct.pack(">g", self.isplit.offset+self.bytes_read)
value = self.file.readline ()
if value == "": # end of fil
return (False, "", "")

self.bytes_read += len(value)
return (True, key, value)

def getProgress(self): w0 S CRS <)
return min (float (self.bytes_read)/self.isplit.length, 1.0)

Simone Leo

Motivation
Architecture

Pydoop: a Python MapReduce and HDFS API for Hadoop Usage

Optional Components: Record Writer, Partitioner

import pydoop.utils as pu

class Writer (pp.RecordWriter) :

def _ init_ (self, context):
super (Writer, self)._ _init__ (context)
jc = context.getJobConf ()
pu.jc_configure_int (self, jc, "mapred.task.partition", "part")
pu.jc_configure(self, jc, "mapred.work.output.dir", "outdir")
pu.jc_configure(self, jc, "mapred.textoutputformat.separator",

“sep", n\tvv)

self.outfn = "%s/part-%05d" % (self.outdir, self.part)
self.file = hdfs.open(self.outfn, "w")

def emit (self, key, value):
self.file.write ("%s%s%s\n" % (key, self.sep, value))

class Partitioner (pp.Partitioner):
def partition(self, key, numOfReduces) :

o

return (hash(key) & sys.maxint) % numOfReduces

Simone Leo

Motivation
Architecture
Pydoop: a Python MapReduce and HDFS API for Hadoop Usage

The HDFS Module

>>> import pydoop.hdfs as hdfs
>>> £ = hdfs.open(’alice.txt’)
>>> f.fs.host
"localhost’
>>> f.fs.port
9000
>>> f.name
"hdfs://localhost:9000/user/simleo/alice.txt’
>>> print f.read(50)
Project Gutenberg’s Alice’s Adventures in Wonderla
>>> print f.readline()
nd, by Lewis Carroll
>>> f.close()
WIICRS

Simone Leo MapReduce Programming with Pydoop

Motivation
Architecture
Pydoop: a Python MapReduce and HDFS API for Hadoop Usage

HDFS Usage by Block Size

import collections, pydoop.hdfs as hdfs

def treewalker (fs, root_info):
yield root_info
if root_info["kind"] == "directory":
for info in fs.list_directory(root_info["name"]):
for item in treewalker (fs, info):
yield item

def usage_by_bs(fs, root):
usage = collections.Counter ()
root_info = fs.get_path_info (root)
for info in treewalker (fs, root_info):
if info["kind"] == "file":
usage[info["block_size"]] += info["size"]
return usage

def main():
fs = hdfs.hdfs("default", 0)
root = "%s/%s" % (fs.working_directory(), "tree_test")
for bs, tot_size in usage_by_bs(fs, root).iteritems():
print "%.1£f\t%d" % (bs/float (2+%20), tot_size) W SCRS <
fs.close()

Simone Leo

Motivation
Architecture
Pydoop: a Python MapReduce and HDFS API for Hadoop Usage

Comparison: vs Jython and Text-Only Streaming

1600

" " —F—

Laoof| g WOt combIner | @ 48 nodes, 2 1.8 GHz dual
1200] core Opterons, 4 GB RAM
élooo @ App: Wordcount on 20 GB
= 800 of random English text
%;“L 500 | e Dataset: uniform
& oo sampling from a spell

checker list

200 e Java/C++ included for

java c++ pydoop jython streaming reference
e ICRS

Simone Leo MapReduce Programming with Pydoop

Pydoop: a Python MapReduce and HDFS API for Hadoop

Motivation
Architecture
Usage

Comparison: vs Dumbo (Binary Streaming)

completion time (s)

2500

2000

1500

1000

500

@ without combiner
EZA with combiner

java pydoop

dumbo

Simone Leo

@ 24 nodes, 2 1.8 GHz dual
core Opterons, 4 GB RAM
@ App: Wordcount on 20 GB
of random English text
o Dataset: uniform
sampling from a spell
checker list
e Java included for
reference

LB ICRS

MapReduce Programming with Pydoop

Pydoop: a Python MapReduce and HDFS API for Hadoop

Pydoop at CRS4

Motivation
Architecture
Usage

@ Core: computational biology applications for analyzing data
generated by our Sequencing and Genotyping Platform

@ the vast majority of the code is written in Python

biodoop-seal.sourceforge.net

;/Short Read

‘\\\WAllgnment//"
> 4 TB / week

5/ Genotype\\r
\ Calling)

N /
7K individuals in < 1d

/ Flow \\

RNA-Seq

| Cytometry /
\\,, ytome ry///

dev

LB ICRS

Simone Leo MapReduce Programming with Pydoop

Summary

@ MapReduce is a big deal :)

e Strengths: large datasets, scalability, ease of use
o Weaknesses: overhead, lower raw performance

@ MapReduce vs more traditional models

e MR: low communication, coarse-grained, data-intensive

e Threads/MPI: high communication, fine-grained,
CPU-intensive

e As with any set of tools, choose according to your problem

@ Solid open source implementation available (Hadoop)
@ Full-fledged Python/HDFS API available (Pydoop)

LB ICRS

Simone Leo Python MapReduce Programming with Pydoop

Appendix For Further Reading

For Further Reading |

[§ H. Sutter,
The Free Lunch is Over: a Fundamental Turn Toward
Concurrency in Software
Dr. Dobb’s Journal 30(3), 2005.

[§ J. Dean and S. Ghemawat,
MapReduce: Simplified Data Processing on Large Clusters
in OSDI 2004: Sixth Symposium on Operating System
Design and Implementation, 2004.

[{ http://hadoop.apache.org
[http://pydoop.sourceforge.net

LB ICRS

Simone Leo Python MapReduce Programming with Pydoop

Appendix For Further Reading

For Further Reading |l

[§ S.Leo and G. Zanetti,
Pydoop: a Python MapReduce and HDFS API for Hadoop
In Proceedings of the 19th ACM International Symposium
on High Performance Distributed Computing (HPDC 2010),
pages 819-825, 2010.

[§ S.Leo, F. Santoni, and G. Zanetti,
Biodoop: Bioinformatics on Hadoop
In The 38th International Conference on Parallel
Processing Workshops (ICPPW 2009), pages 415-422,
2009.

LB ICRS

Simone Leo Python MapReduce Programming with Pydoop

	MapReduce and Hadoop
	The MapReduce Programming Model
	Hadoop: Open Source MapReduce

	Hadoop Crash Course
	Pydoop: a Python MapReduce and HDFS API for Hadoop
	Motivation
	Architecture
	Usage

	
	Appendix
	Appendix
	

