
Objects and classes in Python
Documentation

Release 0.1

Jonathan Fine

July 02, 2011

CONTENTS

1 Decorators 2
1.1 The decorator syntax . 2
1.2 Bound methods . 2
1.3 staticmethod() . 3
1.4 classmethod() . 3
1.5 The call() decorator . 4
1.6 Nesting decorators . 4
1.7 Class decorators before Python 2.6 . 5

2 Constructing classes 6
2.1 The empty class . 6

3 dict_from_class() 7
3.1 The __dict__ of the empty class . 7
3.2 Is the doc-string part of the body? . 8
3.3 Definition of dict_from_class() . 8

4 property_from_class() 9
4.1 About properties . 9
4.2 Definition of property_from_class() . 9
4.3 Using property_from_class() . 10
4.4 Unwanted keys . 10

5 Deconstructing classes 11

6 type(name, bases, dict) 12
6.1 Constructing the empty class . 12
6.2 Constructing any class . 13
6.3 Specifying __doc__, __name__ and __module__ . 13

7 Subclassing int 14
7.1 Mutable and immutable types . 14
7.2 Enumerated integers and named tuples . 14
7.3 The bool type . 14
7.4 Emulating bool - the easy part . 15
7.5 Emulating bool - what goes wrong . 16
7.6 Emulating bool - using __new__ . 16
7.7 Understanding int.__new__ . 17

8 Subclassing tuple 18
8.1 The desired properties of Point . 18
8.2 Answer . 19

9 What happens when you call a class? 20

i

9.1 Creation and initialisation . 20
9.2 The default __new__ . 21
9.3 Summary . 21

10 Metaclass 22
10.1 Every object has a type . 22
10.2 The metaclass of an object . 22
10.3 A trivial non-type metaclass . 23
10.4 A non-trivial example . 23
10.5 What’s the point? . 24

11 The __metaclass__ attribute 25
11.1 Automatic subclassing of object . 25
11.2 Review of type(name, bases, body) and class statement . 25
11.3 The basic principle of the __metaclass__ . 25
11.4 A very silly example . 26
11.5 A less silly example . 26
11.6 A __metaclass__ gotcha . 26
11.7 A decorator example . 27

12 Decorators versus __metaclass__ 28
12.1 Bunch using decorators . 28
12.2 Bunch using __metaclass__ . 29
12.3 How __metaclass__ works . 30
12.4 Discussion . 30

13 JavaScript objects 31
13.1 Like Python classes . 31
13.2 Custom item methods . 32
13.3 On metaclass . 32
13.4 Never instantiated . 34
13.5 Conclusion . 34

14 Exercise: A line from a file 35

15 Exercise: Property from class decorator 36

16 Exercise: Named integers 37

17 Exercise: Subset of a set 38

18 Exercise: Class to and from class data 39

19 Exercise: Your own class to class decorator 40

ii

Objects and classes in Python Documentation, Release 0.1

Contents:

CONTENTS 1

CHAPTER

ONE

DECORATORS

This section cover the decorator syntax and the concept of a decorator (or decorating) callable.

Decorators are a syntactic convenience, that allows a Python source file to say what it is going to do with the result
of a function or a class statement before rather than after the statement. Decorators on function statements have
been available since Python 2.4, and on class statements since Python 2.6.

In this section we describe the decorator syntax and give examples of its use. In addition, we will discuss functions
(and other callables) that are specifically designed for use as decorators. They are also called decorators.

You can, and in medium sized or larger projects probably should, write your own decorators. The decorator code
might, unfortunately, be a little complex. But it can greatly simplify the other code.

1.1 The decorator syntax

The decorator syntax uses the @ character. For function statements the following are equivalent:

State, before defining f, that a_decorator will be applied to it.
@a_decorator
def f(...):

...

def f(...):
...

After defining f, apply a_decorator to it.
f = a_decorator(f)

The benefits of using the decorator syntax are:

1. The name of the function appears only once in the source file.

2. The reader knows, before the possibly quite long definition of the function, that the decorator function will
be applied to it.

The decorator syntax for a class statement is same, except of course that it applies to a class statement.

1.2 Bound methods

Unless you tell it not to, Python will create what is called a bound method when a function is an attribute of a class
and you access it via an instance of a class. This may sound complicated but it does exactly what you want.

2

Objects and classes in Python Documentation, Release 0.1

>>> class A(object):
... def method(*argv):
... return argv
>>> a = A()
>>> a.method
<bound method A.method of <A object at 0x...>>

When we call the bound method the object a is passed as an argument.

>>> a.method(’an arg’)
(<A object at 0x...>, ’an arg’)
>>> a.method(’an arg’)[0] is a
True

1.3 staticmethod()

A static method is a way of suppressing the creation of a bound method when accessing a function.

>>> class A(object):
... @staticmethod
... def method(*argv):
... return argv
>>> a = A()
>>> a.method
<function method at 0x...>

When we call a static method we don’t get any additional arguments.

>>> a.method(’an arg’)
(’an arg’,)

1.4 classmethod()

A class method is like a bound method except that the class of the instance is passed as an argument rather than
the instance itself.

>>> class A(object):
... @classmethod
... def method(*argv):
... return argv
>>> a = A()
>>> a.method
<bound method type.method of <class ’A’>>

When we call a class method the class of the instance is passed as an additional argument.

>>> a.method(’an arg’)
(<class ’A’>, ’an arg’)
>>> a.method(’an arg’)[0] is A
True

In addition, class methods can be called on the class itself.

>>> A.method(’an arg’)
(<class ’A’>, ’an arg’)

1.3. staticmethod() 3

Objects and classes in Python Documentation, Release 0.1

1.5 The call() decorator

Suppose we want to construct a lookup table, say containing the squares of positive integers for 0 to n.

For n small we can do it by hand:

>>> table = [0, 1, 4, 9, 16]
>>> len(table), table[3]
(5, 9)

Because the formula is simple, we could also use a list comprehension:

>>> table = [i * i for i in range(5)]
>>> len(table), table[3]
(5, 9)

Here’s another way, that uses a helper function (which we will call table). For a table of squares list comprehension
is better, because we can write an expression that squares. But for some tables a complex sequence of statements
is required.

>>> def table(n):
... value = []
... for i in range(n):
... value.append(i*i)
... return value
>>> table = table(5)

We call the helper function table for three related reasons

1. It indicates the purpose of the function.

2. It ensures that the helper function is removed from the namespace once the table has been constructed.

3. It conforms to the decorator syntax.

As before, we test the table and find that it works. >>> len(table), table[3] (5, 9)

>>> def call(*argv, **kwargs):
... def call_fn(fn):
... return fn(*argv, **kwargs)
... return call_fn

>>> @call(5)
... def table(n):
... value = []
... for i in range(n):
... value.append(i*i)
... return value

>>> len(table), table[3]
(5, 9)

1.6 Nesting decorators

The decorator syntax can be nested. The following example is similar to the list comprehension approach, except
that it uses a generator function rather than a generator expression.

4 Chapter 1. Decorators

Objects and classes in Python Documentation, Release 0.1

>>> @list
... @call(5)
... def table(n):
... for i in range(n):
... yield i * i

We read this as saying:

The value of table is the list obtained by iterating over the function evaluated at n equal to 5.

The purpose of this example is illustrate some of the concepts. We are not saying that it is, or is not good
programming practice. That will depend, in part, on the context.

As before, we test the table and find that it works.

>>> len(table), table[3]
(5, 9)

1.7 Class decorators before Python 2.6

Prior to Python 2.6 one could not write

@a_decorator
class MyClass(...):

possibly many lines of code.

If you need to support earlier versions of Python, I recommend that you develop in Python 2.6 or later. This
allows your mind and keyboarding to use decorators. Once the decorating code is stable refactor it to support
earlier versions of Python, as follows.

@a_decorator
class MyClass(...):

possibly many lines of code.

MyClass = a_decorator(MyClass) # if changed, change decorator comment.

This approach allows you to think and largely code using the class decorator point of view, at the cost of having
to keep the decorator comment up to date when the decorator changes.

1.7. Class decorators before Python 2.6 5

CHAPTER

TWO

CONSTRUCTING CLASSES

There are two basic ways of constructing classes in Python. The best known way is to use Python’s class
statement. The other way is to use Python’s type() function. This page covers the statement way. type(name,
bases, dict) is more powerful and sometimes more convenient. However, the statement approach is the better way
to get started and in ordinary programming is the most convenient.

2.1 The empty class

We will start with the empty class, which is not as empty as it looks.

>>> class A(object):
... pass

Like most Python objects, our empty class has a dictionary. The dictionary holds the attributes of the object.

>>> A.__dict__
<dictproxy object at 0x...>

Even though our class is empty, its dictionary (or more exactly dictproxy) is not.

>>> sorted(A.__dict__.keys())
[’__dict__’, ’__doc__’, ’__module__’, ’__weakref__’]

Attributes __doc__ and __module__ are there for documentation, and to give better error messages in tracebacks.
The other attributes are there for system purposes.

In addition, our class two attributes that are not even listed in the dictionary. The __bases__ attribute is the list of
base classes provided in the original class statement.

>>> A.__bases__
(<type ’object’>,)

The method resolution order (mro) attribute __mro__ is computed from the bases of the class. It provides support
for multiple inheritance.

>>> A.__mro__
(<class ’A’>, <type ’object’>)

For now the important thing is that even the empty class has attributes. (For IronPython and Jython the attributes
are slightly different.)

6

CHAPTER

THREE

DICT_FROM_CLASS()

In this section we define a functions that gets a dictionary from a class. This dictionary contains all the information
supplied in the body of a class statement, except for the doc-string.

3.1 The __dict__ of the empty class

Here’s our empty class again:

>>> class A(object):
... pass

As seen in Constructing classes, even for the empty class its class dictionary has entries. Handling these always-
there entries is a nuisance when deconstructing classes. Here, once again, is the list of entries.

>>> sorted(A.__dict__.keys())
[’__dict__’, ’__doc__’, ’__module__’, ’__weakref__’]

The __dict__ and __weakref__ entries are there purely for system purposes. This makes them easier to deal with.

The class docstring __doc__ is None unless the user supplies a value.

>>> A.__doc__ is None
True

>>> class A2(object):
... ’This is the docstring’

>>> A2.__doc__
’This is the docstring’

Ordinarily, __module__ is the name of the module in which the class is defined. However, because of the way
Sphinx uses doctest, it gets the name of the module wrong. Please don’t worry about this. Despite what it says
below, it’s the name of the module.

>>> A.__module__
’__builtin__’

7

Objects and classes in Python Documentation, Release 0.1

3.2 Is the doc-string part of the body?

Soon we will define a function that copies the body, as a dictionary, out of a class. But first we must answer the
question: Is the doc-string part of the body of a class?

There is no completely satisfactory answer to this question, as there are good arguments on both sides. We
choose NO, because for example using the -OO command line option will remove doc-strings, and so they are
not an essential part of the body of the class. (However, -OO does not remove doc-strings produced explicitly, by
assigning to __doc__.)

The keys to be excluded are precisely the ones that the empty class (which has an empty body) has.

>>> _excluded_keys = set(A.__dict__.keys())

3.3 Definition of dict_from_class()

This function simply filters the class dictionary, copying only the items whose key is not excluded.

>>> def dict_from_class(cls):
... return dict(
... (key, value)
... for (key, value) in cls.__dict__.items()
... if key not in _excluded_keys
...)

As expected, the empty class has an empty body.

>>> dict_from_class(A)
{}

Here’s a class whose body is not empty.

>>> class B(object):
... ’This docstring is not part of the body.’’’
... s = ’a string’
... def f(self): pass

We get what we expect for the body. (See [somewhere] for why we need the __func__.)

>>> dict_from_class(B) == dict(s=’a string’, f=B.f.__func__)
True

Here’s another way of expressing the same truth.

>>> sorted(dict_from_class(B).items())
[(’f’, <function f at 0x...>), (’s’, ’a string’)]

8 Chapter 3. dict_from_class()

CHAPTER

FOUR

PROPERTY_FROM_CLASS()

This section shows how using a class decorator, based upon dict_from_class(), can make it much easier to define
complex properties. But first we review properties.

4.1 About properties

The property() type is a way of ‘owning the dot’ so that attribute getting, setting and deletion calls specified
functions.

One adds a property to a class by adding to its a body a line such as the following, but with suitable functions for
some or all of fget, fset and fdel. One can also specify doc to give the property a doc-string.

attrib = property(fget=None, fset=None, fdel=None, doc=None)

If all one wants is to specify fset (which is a common case) you can use property as a decorator. This works
because fget is the first argument.

For example, to make the area of a rectangle a read-only property you could write:

@property
def attrib(self):

return self.width * self.length

Suppose now you have a property that you wish to both get and set. Here’s the syntax we’d like to use.

@property_from_class
class attrib(object):

’’’Doc-string for property.’’’

def fget(self):
’’’Code to get attribute goes here.’’’

def fset(self):
’’’Code to set attribute goes here.’’’

We will now construct such a decorator.

4.2 Definition of property_from_class()

This function, designed to be used as a decorator, is applied to a class and returns a property. Notice how we
pick up the doc-string as a separate parameter. We don’t have to check for unwanted keys in the class dictionary -
property() will do that for us.

9

Objects and classes in Python Documentation, Release 0.1

>>> def property_from_class(cls):
...
... return property(doc=cls.__doc__, **dict_from_class(cls))

4.3 Using property_from_class()

Here is an example of its use. We add a property called value, which stores its data in _value (which by Python
convention is private). In this example, we validate the data before it is stored (to ensure that it is an integer).

>>> class B(object):
... def __init__(self):
... self._value = 0
...
... @property_from_class
... class value(object):
... ’’’The value must be an integer.’’’
... def fget(self):
... return self._value
... def fset(self, value):
... # Ensure that value to be stored is an int.
... assert isinstance(value, int), repr(value)
... self._value = value

Here we show that B has the required properties.

>>> b = B()
>>> b.value
0

>>> b.value = 3

>>> b.value
3

>>> B.value.__doc__
’The value must be an integer.’

>>> b.value = ’a string’
Traceback (most recent call last):
AssertionError: ’a string’

4.4 Unwanted keys

If the class body contains a key that property does not accept we for no extra work get an exception (which
admittedly could be a clearer).

>>> @property_from_class
... class value(object):
... def get(self):
... return self._value
Traceback (most recent call last):
TypeError: ’get’ is an invalid keyword argument for this function

10 Chapter 4. property_from_class()

CHAPTER

FIVE

DECONSTRUCTING CLASSES

In Constructing classes we saw how to construct a class (by using the class keyword). In this section we see how
to reverse the process.

To use the class keyword you have to specify:

1. A name for your class.

2. A tuple of bases.

3. A class body.

In this section we see how to get this information back again. Let’s do the easy stuff first. Here’s our empty class
again:

>>> class A(object):
... pass

Here’s how to get the name of the class:

>>> A.__name__
’A’

And here’s how to get the bases:

>>> A.__bases__
(<type ’object’>,)

[To be continued.]

11

CHAPTER

SIX

TYPE(NAME, BASES, DICT)

According to its docstring, there are two ways to call the type() builtin.

>>> print type.__doc__
type(object) -> the object’s type
type(name, bases, dict) -> a new type

In this section we explore how to use type() to construct new classes.

6.1 Constructing the empty class

As usual, we start with the empty class. The __name__ attribute of the class need not be the same as the name of
the variable in which we store the class. When at top-level (in the module context) the class command binds the
class to the module object, using the name of the class as the key.

When we use type, there is no link between the __name__ and the binding.

>>> cls = type(’A’, (object,), {})

The new class has the name we expect.

>>> cls.__name__
’A’

Its docstring is empty.

>>> cls.__doc__ is None
True

It does not have a __module__ attribute, which is surprising.

>>> cls.__module__
Traceback (most recent call last):
AttributeError: __module__

This class does not have a __module__ attribute because to the things that Sphinx does when running the doctest.
Ordinarily, the class will have a __module__ attribute.

>>> sorted(cls.__dict__.keys())
[’__dict__’, ’__doc__’, ’__weakref__’]

The lack of a __module__ attribute explains the string representation of the class.

>>> cls
<class ’A’>

12

Objects and classes in Python Documentation, Release 0.1

6.2 Constructing any class

We obtained the empty class, whose __dict__ has only the system keys, by passing the empty dictionary to
type(). We obtain more interesting classes by passing a non-empty dictionary. We can at the same time pass
more interesting bases, in order to achieve inheritance.

6.3 Specifying __doc__, __name__ and __module__

Let’s try to use the dict argument to specify these special attributes.

>>> body = dict(__doc__=’docstring’, __name__=’not_A’, __module__=’modname’)
>>> cls2 = type(’A’, (object,), body)

We have set the __docstring__ and __module__ attributes, but the __name__ is still A.

>>> cls2.__doc__, cls2.__name__, cls2.__module__
(’docstring’, ’A’, ’modname’)

6.2. Constructing any class 13

CHAPTER

SEVEN

SUBCLASSING INT

We subclass in order to create a new class whose behaviour is inherited from the base classes, except that the new
class can also override and add behaviour. Object creation is behaviour. For most classes it is enough to provide a
different __init__ method, but for immutable classes one often have to provide a different __new__ method.

In this section we explain why __new__ is needed, and give examples of its use. But first we review mutation.

7.1 Mutable and immutable types

Some objects in Python, such as dictionaries and lists, can be changed. We can change these objects after they
have been made. This is called mutation. The types dict and list are called mutable types.

>>> x = []
>>> x.append(1)
>>> x
[1]

Some other objects, such as strings and tuples, cannot be changed. Once made they cannot be changed. They are
called immutable types.

>>> y = ’abc’
>>> y[0] = ’A’
Traceback (most recent call last):
TypeError: ’str’ object does not support item assignment

7.2 Enumerated integers and named tuples

We will use enumerated integers as an example in this section. In Python, booleans are an example of an enumer-
ated integer type.

However, our task in this section is not to use booleans but to understand them. This will allow us to create our
own subclasses of int and of immutable types.

7.3 The bool type

Here we review the bool type in Python.

Comparisons return a boolean, which is either True or False.

>>> 1 < 2, 1 == 2
(True, False)

14

Objects and classes in Python Documentation, Release 0.1

True and False are instance of the bool type. >>> type(True), type(False) (<type ‘bool’>, <type ‘bool’>)

The bool type inherits from int.

>>> bool.__bases__
(<type ’int’>,)

Because True and False are (in the sense of inherit from) integers, we can do arithmetic on them.

>>> True + True
2
>>> False * 10
0

We can even use boolean expressions as numbers (although doing so might result in obscure code).

>>> a = 3; b = 4
>>> (a < b) * 10 + (a == b) * 20
10

7.4 Emulating bool - the easy part

In this subsection, as preparation for enumerated integers, we will start to code a subclass of int that behave like
bool. We will start with string representation, which is fairly easy.

>>> class MyBool(int):
... def __repr__(self):
... return ’MyBool.’ + [’False’, ’True’][self]

This give us the correct string representations. >>> f = MyBool(0) >>> f MyBool.False

>>> t = MyBool(1)
>>> t
MyBool.True

But compare

>>> bool(2) == 1
True

with

>>> MyBool(2) == 1
False

In fact we have

>>> MyBool(2) == 2
True
>>> MyBool(2)
Traceback (most recent call last):
IndexError: list index out of range

7.4. Emulating bool - the easy part 15

Objects and classes in Python Documentation, Release 0.1

7.5 Emulating bool - what goes wrong

In many classes we use __init__ to mutate the newly constructed object, typically by storing or otherwise using
the arguments to __init__. But we can’t do this with a subclass of int (or any other immuatable) because they
are immutable.

You might try

>>> class InitBool(int):
... def __init__(self, value):
... self = bool(value)

but it won’t work. Look at this - nothing has changed.

>>> x = InitBool(2)
>>> x == 2
True

This line of code

self = bool(value)

is deceptive. It does change the value bound to the self in __init__, but it does not change the object that was
passed to __init__.

You might also try

>>> class InitBool2(int):
... def __init__(self, value):
... return bool(value)

but when called it raises an exception

>>> x = InitBool2(2)
Traceback (most recent call last):
TypeError: __init__() should return None, not ’bool’

7.6 Emulating bool - using __new__

The solution to the problem is to use __new__. Here we will show that it works, and later we will explain
elsewhere exactly what happens. [where?].

>>> class NewBool(int):
... def __new__(cls, value):
... return int.__new__(cls, bool(value))

This works - no exception and 2 is converted into 1.

>>> y = NewBool(2)
>>> y == 1
True

We’ll go carefully through this definition of __new__.

1. We define __new__, which like __init__ has a special role in object creation. But it’s role is to do with creation
of a new object, and not the initialisation of an already created object.

2. The function __new__ has two parameters. The first parameter is a class. The way we’ve called it, it will be the
NewBool class.

16 Chapter 7. Subclassing int

Objects and classes in Python Documentation, Release 0.1

3. The function __new__ returns a value.

4. The value returned is

int.__new__(cls, bool(value))

7.7 Understanding int.__new__

Here’s the docstring for _int.__new__.

>>> print int.__new__.__doc__
T.__new__(S, ...) -> a new object with type S, a subtype of T

Let’s try it, with S and T equal.

>>> z = int.__new__(int, 5) # (*)
>>> z == 5
True
>>> type(z)
<type ’int’>

Thus, we see that line (*) is very much like or perhaps the same as int(5). Let’s try another example.

>>> int(’10’)
10
>>> int.__new__(int, ’21’)
21

The docstring above says that S must be a subtype of T. So let’s create one.

>>> class SubInt(int): pass

And now let’s use it as an argument to int.__new__.

>>> subint = int.__new__(SubInt, 11)

Now let’s test the object we’ve just created. We expect it to be an instance of SubInt, and to be equal to 11.

>>> subint == 11
True
>>> type(subint)
<class ’SubInt’>

There we have it. Success. All that’s required to complete the emulation of bool is to put all the pieces together.

Note: The key to subclassing immutable types is to use __new__ for both object creation and initialisation.

Exercise Create a class EmulBool that behaves like the bool builtin.

Exercise (Hard). Parameterize EmulBool. In other words, create an EnumInt such that

X = EnumInt([’False’, ’True’])

creates a class X that behave like EmulBool.

7.7. Understanding int.__new__ 17

CHAPTER

EIGHT

SUBCLASSING TUPLE

Recall that with EmulBool in Subclassing int we had to define a __new__ method because we need to adjust the
values passed to EmulBool before the instance was created.

8.1 The desired properties of Point

Since Python 2.6, namedtuple has been part of the collections module. We can use it to provide an
example of what is required.

>>> from collections import namedtuple
>>> Point = namedtuple(’Point’, (’x’, ’y’))

Here are some facts about the Point class.

1. Point is a subclass of tuple.

>>> Point.__bases__
(<type ’tuple’>,)

2. Two arguments are used to initialise a point.

>>> p = Point(1, 2)

3. A point has items at 0 and at 1.

>>> p[0], p[1]
(1, 2)

4. We can access these items using the names x and y.

>>> p.x, p.y
(1, 2)

Exercise Write an implementation of Point, that satisfies the above. (Please use the hints - they are there to help
you.)

Hint To pass 1, 2 and 3 only three lines of code are required.

Hint To pass 4 use property, which replaces getting an attribute by a function call.

Hint The elegant way to pass 4 is to use operator.itemgetter(). Use this, and you’ll need only another 3
lines of code in order to pass 4.

18

Objects and classes in Python Documentation, Release 0.1

8.2 Answer

1. Point is a subclass of tuple.

>>> class Point(tuple):
... def __new__(self, x, y):
... return tuple.__new__(Point, (x, y))

>>> Point.__bases__
(<type ’tuple’>,)

2. Two arguments are used to initialise a point.

>>> p = Point(1, 2)

3. A point has items at 0 and at 1.

>>> p[0], p[1]
(1, 2)

4. We can access these items using the names x and y.

>>> import operator

>>> Point.x = property(operator.itemgetter(0))
>>> Point.y = property(operator.itemgetter(1))

>>> p.x, p.y
(1, 2)

8.2. Answer 19

CHAPTER

NINE

WHAT HAPPENS WHEN YOU CALL A
CLASS?

In this section we describe, in some detail, what happens when you call a class.

9.1 Creation and initialisation

Recall that every object has a type (sometimes known as a class).

>>> type(None), type(12), type(3.14), type([])
(<type ’NoneType’>, <type ’int’>, <type ’float’>, <type ’list’>)

The result of calling a class C is, ordinarily, an initialised object whose type is C. In Python this process is done
by two functions

• __new__ returns an object that has the right type

• __init__ initialises the object created by __new__

To explain we will do the two steps one at a time. This will also clarify some details. But before we begin, we
need a simple class.

>>> class A(object):
... def __init__(self, arg):
... self.arg = arg

We will explain what happens when Python executes the following.

a = A(’an arg’)

First, Python creates an object that has the right type. (The temporary tmp is introduced just to explain what
happens. Python stores its value at a nameless location.)

>>> tmp = A.__new__(A, ’an arg’)
>>> type(tmp)
<class ’A’>

But it has not been initialised.

>>> tmp.arg
Traceback (most recent call last):
AttributeError: ’A’ object has no attribute ’arg’

Second, Python runs our initialisation code.

20

Objects and classes in Python Documentation, Release 0.1

>>> tmp.__init__(’an arg’)
>>> tmp.arg
’an arg’

Finally, Python stores the value at a.

>>> a = tmp

9.2 The default __new__

We did not define a __new__ method for our class A, but all the same Python was able to call A.__new__. How
is this possible?

For an instance of a class C, getting an attribute proceeds via the method resolution order of C. Something similar,
but with important differences, happens when getting an attribute from C itself (rather than just an instance).

Here’s proof that A.__new__ and object.__new__ are the same object. We show this in two different, but equiv-
alant, ways.

>>> A.__new__ is object.__new__
True
>>> id(A.__new__) == id(object.__new__)
True

This explains how it is that Python can call A.__new__ even though we did not supply such a function ourselves.

For another example, we subclass int.

>>> class subint(int): pass
>>> subint.__new__ is int.__new__
True

9.3 Summary

Suppose C is a class. When you call, say

C(*argv, **kwargs)

the following happens.

1. C.__new__ is found.

2. The result of the following call is stored, say in tmp.

C.__new__(C, *argv, **kwargs)

3. tmp.__init__ is found.

4. The result of the following is return as the value of the class call.

self.__init__(*argv, **kwargs)

5. (Not discussed.) If tmp is not an instance of C (which includes subclasses of C) then steps 3 and 4 are
omitted.

9.2. The default __new__ 21

CHAPTER

TEN

METACLASS

10.1 Every object has a type

In Python, every object has a type, and the type of an object is an instance of type.

>>> type(0)
<type ’int’>
>>> isinstance(type(0), type)
True
>>> class A(object): pass
>>> type(A)
<type ’type’>
>>> a = A()
>>> type(a)
<class ’A’>

Even type has a type which is an instance of type (although it’s a little silly).

>>> type(type)
<type ’type’>
>>> isinstance(type, type)
True

10.2 The metaclass of an object

The metaclass of an object is defined to be the type of its type.

>>> def metaclass(obj):
... return type(type(obj))

>>> metaclass(0)
<type ’type’>

>>> metaclass(metaclass)
<type ’type’>

It’s quite hard to create an object whose metaclass is not type.

22

Objects and classes in Python Documentation, Release 0.1

10.3 A trivial non-type metaclass

In Python anything that is a type can be subclassed. So we can subclass type itself.

>>> class subtype(type): pass

We can now use subtype in pretty much the same way as type itself. In particular we can use it to construct an
empty class.

>>> cls = subtype(’name’, (object,), {})

Let’s look at the type and metaclass of cls.

>>> type(cls), metaclass(cls)
(<class ’subtype’>, <type ’type’>)

Notice that type(cls) is not type. This is our way in. Here’s an instance of cls, followed by its type and metaclass.

>>> obj = cls()
>>> type(obj), metaclass(obj)
(<class ’name’>, <class ’subtype’>)

We have just constructed an object with a non-trivial metaclass. The metaclass of obj is subtype.

10.4 A non-trivial example

When Python executes

obj[key]

behind the scenes it executes

obj.__getitem__[key]

Here’s an example:

>>> class A(object):
... def __getitem__(self, key):
... return getattr(self, key)

>>> obj = A()
>>> obj[’name’]
Traceback (most recent call last):
AttributeError: ’A’ object has no attribute ’name’

>>> obj.name = ’some value’
>>> obj[’name’]
’some value’

10.3. A trivial non-type metaclass 23

Objects and classes in Python Documentation, Release 0.1

10.5 What’s the point?

There are two main reasons for introducing and using a metaclass, or in other words a subclass of type.

1. We wish to create classes whose behaviour requires special methods or other properties on the type of the
class. This sounds and is odd, but can useful. In JavaScript objects we use it to create an elegant and simple
implementation in Python of JavaScript object semantics.

2. We wish to make the class statement construct a class differently, somewhat as bool() construct a number
differently from an int(). This is described in The __metaclass__ attribute, which is the next section.

24 Chapter 10. Metaclass

CHAPTER

ELEVEN

THE __METACLASS__ ATTRIBUTE

The __metaclass__ attribute was introduced to give the programmer some control over the semantics of the class
statement. In particular it eases the transition from old-style classes (which are not covered in this tutorial) and
new-style classes (simply called classes in this tutorial).

11.1 Automatic subclassing of object

If at the told of a module you write:

__metaclass__ = type

then class statements of the form:

class MyClass:
pass

will automatically be new-style. In other words, you don’t have to explicitly place object in the list of bases. (This
behaviour is a consequence of the semantics of __metaclass__.)

11.2 Review of type(name, bases, body) and class statement

Recall that the type command, called like so

cls = type(name, bases, body)

constructs the class cls, as does the class statement

class cls(...):

body statements go here

The __metaclass__ attribute provides a link between these two ways of constructing classes.

11.3 The basic principle of the __metaclass__

Ordinarily, a class statement results in a call to type, with name, bases and body as arguments. However, this can
be changed by

1. Assigning __metaclass__ as an class body attribute.

2. Assigning __metaclass__ as a module attribute.

25

Objects and classes in Python Documentation, Release 0.1

3. Placing a suitable class in the bases of the class statement.

Method (1) is used above, in Automatic subclassing of object. To explain (2) we will introduce a very silly
example.

11.4 A very silly example

It’s not necessary for the __metaclass__ attribute to be type or a subclass of type. It could be any callable.

Here it is a function that returns a string.

>>> class very_silly(object):
... def __metaclass__(*argv):
... return ’This is very silly.’

The variable silly bound by the class statement is a string. In fact, it is the return value of the __metaclass__
attribute.

>>> very_silly
’This is very silly.’

11.5 A less silly example

Here’s a less silly example. We define the __metaclass__ to return the argument vector passed to it. This consists
of name, bases and body.

>>> class silly(object):
... def __metaclass__(*argv):
... return argv

The variable silly is now bound to the value of argv. So it is a tuple of length 3, and it can be unpacked into name,
bases and body.

>>> type(silly), len(silly)
(<type ’tuple’>, 3)
>>> name, bases, body = silly

The name, and bases are much as we expect them.

>>> name == ’silly’, bases ==(object,)
(True, True)

The body has, as could be expected, a __metaclass__ key, which has the expected value.

>>> sorted(body.keys())
[’__metaclass__’, ’__module__’]
>>> silly[2][’__metaclass__’]
<function __metaclass__ at 0x...>

11.6 A __metaclass__ gotcha

A class statement, if it does not raise an exception, assigns a value to a variable. Ordinarily, this value is a direct
instance of type, namely

26 Chapter 11. The __metaclass__ attribute

Objects and classes in Python Documentation, Release 0.1

type(name, bases, body)

However, using __metaclass__ above allows the value assigned by a class statement to be any object whatsover.
In the very silly example the value assigned by the class statement was a string. This is a violates the principle of
least surprise, and that is the main reason why the example is very silly (and not that it does nothing useful).

With decorators, which are available on class statements since Python 2.6, the same effect as the silly example can
be obtained without resort to complex magic.

11.7 A decorator example

Here we produce something similar to the silly example. First we define a decorator

>>> from jfine.classtools import dict_from_class
>>> def type_argv_from_class(cls):
... d = cls.__dict__
... name = cls.__name__
... body = dict_from_class(cls)
... bases = cls.__bases__
... return name, bases, body

Now we use the decorator. There is no magic. The class statement produces a class, and the decorator function
type_args_from_class() produces an argument vector from the class.

>>> @type_argv_from_class
... class argv(object):
... key = ’a value’

When we unpack argv we get what we expect.

>>> name, bases, body = argv
>>> name
’argv’
>>> bases
(<type ’object’>,)
>>> body
{’key’: ’a value’}

11.7. A decorator example 27

CHAPTER

TWELVE

DECORATORS VERSUS
__METACLASS__

Whenever a __metaclass__ is used, one could also use a decorator to get effectively the same result. This section
discusses this topic.

For an example we use the concept of a Bunch, as discussed in Alex Martelli’s excellent book Python in a Nutshell.
As he says, a Bunch is similar to the struct type in C.

12.1 Bunch using decorators

Here we give a construction based on the decorator point of view. First we define a function, which can be used
as a decorator, that returns a bunch class.

>>> def bunch_from_dict(a_dict, name=’a_bunch’):
...
... __slots__ = sorted(a_dict.keys())
... defaults = dict(a_dict)
... bases = (BaseBunch,)
...
... def __init__(self, **kwargs):
... for d in defaults, kwargs:
... for key, value in d.items():
... setattr(self, key, value)
...
... body = dict(__slots__=__slots__, __init__=__init__)
... return type(name, bases, body)

We now need to implement the BaseBunch class, from which the return bunch classes will inherit __repr__ and,
if we wish, other attributes.

>>> class BaseBunch(object):
... def __repr__(self):
... body = ’, ’.join([
... ’%s=%r’ % (key, getattr(self, key))
... for key in self.__slots__
...])
... return ’%s(%s)’ % (self.__class__.__name__, body)

Here’s an example of the creation of a Point class.

>>> Point = bunch_from_dict(dict(x=0, y=0), ’Point’)

And here are examples of its use.

28

Objects and classes in Python Documentation, Release 0.1

>>> Point(x=1, y=3)
Point(x=1, y=3)
>>> Point()
Point(x=0, y=0)

We can also use bunch_from_dict as a decorator.

>>> from jfine.classtools import dict_from_class
>>> @bunch_from_dict
... @dict_from_class
... class RGB(object):
... ’This is a docstring.’
... red = green = blue = 0

We could, of course, introduce a new decorator bunch_from_class() to make life a little easier for the user.

Here’s an example of the use of the RGB class. It shows that the name of the class is not being properly picked
up. This is an interface problem rather than a problem with the decorator approach. The name is available to be
used, but the interface is not making it available. Similar remarks apply to the docstring.

>>> RGB(blue=45, green=150)
a_bunch(blue=45, green=150, red=0)

12.2 Bunch using __metaclass__

The code here is based on the __metaclass__ implementation of Bunch, given in Python in a Nutshell. The API
is:

class Point(MetaBunch):

x = 0.0
y = 0.0

The base class MetaBunch() is defined by:

class MetaBunch(object):

__metaclass__ = metaMetaBunch

The real work is done in

class metaMetaBunch(type):

def __new__(cls, name, bases, body):

Creation of new_body similar to bunch_from_dict.
... but first need to ’clean up’ the body.
new_body = ... # Computed from body

Creation of new instance similar to bunch_from_dict.
... but here can’t use type(name, bases, new_body)
return type.__new__(cls, name, bases, new_body)

where I’ve omitted the crucial code that computes the new_body from the old. (My focus here is on the logic of
__metaclass_ and not the construction of the new body.)

12.2. Bunch using __metaclass__ 29

Objects and classes in Python Documentation, Release 0.1

12.3 How __metaclass__ works

In Python the class statement creates the class body from the code you have written, placing it in a dictionary. It
also picks up the name and the bases in the first line of the class statement. These three arguments, (name, bases,
body) are then passed to a function.

The __metaclass__ attribute is part of determining that function. If __metaclass__ is a key in the body dictionary
then the value of that key is used. This value could be anything, although if not callable an exception will be
raised.

In the example above, the MetaBunch class body has a key __metaclass__, and so its value metaMetaBunch is
used. It is metaMetaBunch that is used to create the value that is stored at MetaBunch.

What is that value? When we instantiate metaMetaBunch we use its __new__ method to create the instance, which
is an instance of type. In particular, the code that creates the new_body is run on the body of MetaBunch.

Now what happens when we subclass MetaBunch. One might think that

• because Point inherits from MetaBunch

• and because MetaBunch has a __metaclass__ in its body

• and that __metaclass__ has value metaMetaBunch

it follows that metaMetaBunch is use to construct the Point class.

But this is gotcha. Even though the conclusion is correct the reasoning is not. What happens is that

• Python looks for __metaclass__ in the body of Point

• but it’s not there so it looks at the bases of Point

• and in the bases it finds MetaBunch

• whose type is metaMetaBunch

and so it uses that instead of type when constructing Point.

12.4 Discussion

Here are the main differences between the two approaches.

The decorator approach

• Syntax differs from ordinary class statement.

• Awkward if class decorators are not available.

• As is, the name is not picked up.

• Easier to construct Bunch classes dynamically.

• The Point class is an instance of type.

The __metaclass__ approach

• Syntax the same as ordinary class statement.

• ‘Magic’ takes place behind the scenes.

• Requires more knowledge to implement.

• Awkward to construct Bunch classes dynamically.

• The Point class is an instance of MetaBunch.

My view is that using decorators is simpler than using __metaclass__, particularly if the decorator syntax is
available.

30 Chapter 12. Decorators versus __metaclass__

CHAPTER

THIRTEEN

JAVASCRIPT OBJECTS

13.1 Like Python classes

In JavaScript all objects are part of an inheritance tree. The create function adds a node to the inheritance tree.

// A JavaScript object.
js> root = {}

// Prototype inheritance.
js> create = function (obj) {

var f = function () {return this;};
f.prototype = obj;
return new f;

}

js> a = create(root)
js> b = create(a)

js> a.name = 5
js> a.name
5
js> b.name
5

In Python classes inherit in the same way.

>>> root = type # Most classes are instance of type.
>>> class a(root): pass
>>> class b(a): pass # Class inheritance.

>>> a.name = 5 # Just like JavaScript.
>>> a.name
5
>>> b.name
5

13.1.1 class explanation

In Python we can subclass anything whose type is type (or a subclass of type). A subclass (and its instances)
inherits properties from the super-class.

>>> type(root) == type(a) == type(b) == type
True

31

Objects and classes in Python Documentation, Release 0.1

13.2 Custom item methods

In JavaScript attribute and item access are the same.

js> a = create(root)

js> a.name = 5
js> a[’name’]
5

js> a[’key’] = 6
js> a.key
6

js> a[1] = 6
js> a[’1’]
6

In Python we can defined our own item methods. (The programmer owns the dot.)

>>> class A(object):
...
... def __getitem__(self, key):
... return getattr(self, str(key))
... def __setitem__(self, key, value):
... return setattr(self, str(key), value)

>>> a = A()
>>> a.name = 5

>>> a[’name’]
5

>>> a[’key’] = 6
>>> a.key
6

>>> a[1] = 6
>>> a[’1’]
6

Because type(a) is A, which has the special item methods, we get the special item behaviour.

>>> type(a) is A
True

13.3 On metaclass

Using previous definition, we cannot subclass a to create b.

>>> class b(a): pass
Traceback (most recent call last):

class b(a): pass
TypeError: Error when calling the metaclass bases

object.__new__() takes no parameters

This is because a is not a type. The solution involves Python metaclasses (an advanced topic).

32 Chapter 13. JavaScript objects

Objects and classes in Python Documentation, Release 0.1

>>> isinstance(a, type)
False

13.3.1 metaclass construction

We will subclass type, not object, and add to it the special item methods.

>>> class ObjectType(type):
...
... def __getitem__(self, key):
... return getattr(self, str(key))
...
... def __setitem__(self, key, value):
... return setattr(self, str(key), value)

Here is a fancy way of calling ObjectType.

>>> class root(object):
... __metaclass__ = ObjectType

Here is a more direct (and equivalent) construction (create an instance of ObjectType, whose instances are ob-
jects).

>>> root = ObjectType(’root’, (object,), {})
>>> isinstance(root(), object)
True

13.3.2 metaclass demonstration

>>> class a(root): pass
>>> class b(a): pass

>>> a.name = 5
>>> a.name
5
>>> b.name
5
>>> a[’name’]
5
>>> b[’name’]
5

>>> a[1] = 6
>>> a[’1’]
6

13.3.3 metaclass explanation

Because type(root) is a subclass of type we can subclass root.

>>> issubclass(type(root), type)
True

Because the type(root) is ObjectType, which has special item methods, we get the special item behaviour.

13.3. On metaclass 33

Objects and classes in Python Documentation, Release 0.1

>>> type(root) == type(a) == type(b) == ObjectType
True

13.4 Never instantiated

We can’t call JavaScript objects (unless they are a function). But create creates ordinary JavaScript objects.

js> a = create(root)
js> a(1, 2, 3)
TypeError: a is not a function

We will monkey-patch the previous Python class, to provide custom behaviour when called.

>>> def raise_not_a_function(obj, *argv, **kwargs):
... raise TypeError, obj.__name__ + ’ is not a function’

>>> ObjectType.__call__ = raise_not_a_function

>>> a(1, 2, 3)
Traceback (most recent call last):

a(1, 2, 3)
TypeError: a is not a function

13.5 Conclusion

JavaScript objects are like Python classes (because they inherit like Python classes).

For JavaScript attribute and item access are the same. This is achieved in Python by providing custom item
methods.

In Python the custom item methods must be placed on the type of the object (or a superclass of its type).

Ordinary JavaScript objects are not functions and cannot be called. A Python class can be called (to create an
instance of the object). But we can override this behaviour by supplying a custom method for call.

To summarize: ..

JavaScript objects are like Python classes with custom item methods (on the metaclass) that are
never instantiated.

It’s worth saying again:

JavaScript objects are like Python classes with custom item methods (on the metaclass) that are
never instantiated.

34 Chapter 13. JavaScript objects

CHAPTER

FOURTEEN

EXERCISE: A LINE FROM A FILE

We want to read lines from one of more files. We want each line to

• be a string

• have a filename attribute

• have a linenumber attribute

Recall that we can already iterate over the lines of a file.

The interface I suggest is

filename = ’myfile.txt’
f = open(filename)
labelled_lines = LabelledLines(f, filename)

The behavior we’d like is for this code

for line in labelled_lines:
print (line.filename, line.linenumber, line)

to produce output like

(’myfile.txt’, 0, ’First line\n’)
(’myfile.txt’, 1, ’Second line\n’)
(’myfile.txt’, 2, ’Third line\n’)

35

CHAPTER

FIFTEEN

EXERCISE: PROPERTY FROM CLASS
DECORATOR

A property is a way of providing a class with virtual or protected attributes. They can be a good way of hiding and
protecting implementation details. The area property of a rectangle is a good example of a read-only property.

Some properties are both read and write. There may also be a case for write-only properties. One can also delete
a property. To help the programmer, a property can have a docstring.

The signature for property is

property(fget=None, fset=None, fdel=None, doc=None)

The exercise is to make a decorator that simplifies the creation of complex property attributes. The interface I
suggest is

class MyClass(object):

@property_from_class
class my_property(object):

’’’This is to be the doc string for the property.’’’

def fget(self):
pass # code goes here

def fset(self):
pass # code goes here

def fdel(self):
pass # code goes here

Any or all of fget, fset, fdel can be omitted, as can the docstring. It should be an error to ‘use the wrong keyword’.

36

CHAPTER

SIXTEEN

EXERCISE: NAMED INTEGERS

The bool type produces True and False, which are something like named integers. The exercise is to produce,
from something like a mapping, a subclass of int that provides named integers.

Just as True and False look nicer that 0 or 1 when a quantity is a boolean, so named integers look nicer with
symbolic constants.

The interface should be something like

my_items = [(0, ’zero’), (1, ’one’), (2, ’two’)]
OneTwoThree = whatsit(my_items)

The behavior should be something like

z = OneTwoThree(’zero’)
str(z) == ’zero’

t = OneTwoThree(2)
str(t) == ’two’

Thus, any string or integer (within range) can be used to produce a named integer. Out of range values should
produce an exception.

37

CHAPTER

SEVENTEEN

EXERCISE: SUBSET OF A SET

The task here is to produce a memory efficient way of representing a subset of a given base set. We will use bytes,
and for simplicity we assume that the base set has at most eight elements.

In Python 2.6 bytes is an alternative name for string, and in Python 3 it is a separate type in its own right (with a
somewhat different interface). Please do the exercise in Python 2.6 (or earlier, with bytes equal to str).

The interface I suggest is something like

all_vowels = ’aeiou’
SubsetOfVowels = SubsetClassFactory(all_vowels)

my_vowels = SubsetOfVowels(’ie’)
set(my_vowels) == set([’i’, ’e’])
ord(my_vowels[0]) == 2 + 4

Don’t deal with set operations, such as intersection or complement.

By the way, an application would be dealing with large numbers of subsets of a largish set (set 255 elements),
using numpy to store the data and do the hard work. So set operation details would have to fit in with numpy.

38

CHAPTER

EIGHTEEN

EXERCISE: CLASS TO AND FROM
CLASS DATA

Sometimes __metaclass__ is used to amend the operation of a class statement. However always the same change
can be done with a decorator function, and often this is clearer and easier.

The exercise here is to produce some class from class decorators. The first task is to produce two decorators whose
composition is trivial.

In other words this

@class_from_class_data
@class_data_from_class
class MyClass(object):

pass

should be equivalent to this

class MyClass(object):
pass

Once we have done this, it’s a lot easier to modify classes during construction, because so to speak the input-output
has already been dealt with. Simply write a function that changes or creates a class data object.

The decorator function class_data_from_class should produce class_data, which we can regard as a tuple.

The decorator function class_from_class_data should produce a class from the class data.

Note: Don’t assume that the type of MyClass is type. It could be a subclass of type.

39

CHAPTER

NINETEEN

EXERCISE: YOUR OWN CLASS TO
CLASS DECORATOR

This is an open exercise. The task is to find a situation where you need to change a class during its construction
via a class statement, and then to write a class to class decorator that does this.

Please use the class_to_class_data and class_data_to_class decorators, either the ones supplied by the tutorial or
your own (if you think they are better).

Here’s a template, to get you started.

def my_class_decorator(cls):

class_data = class_data_from_class(cls)
new_class_data = whatever_you_want_it_to_be
new_cls = class_from_class_data(new_class_data)
return new_cls

Here are some ideas

• Check that the class supplies certain methods

• Perform other checks on the class

• Change methods so all calls are logged

• Supply extra utility methods to the class

• Refactor existing code that depends on __metaclass__

• Search Page

40

	Decorators
	The decorator syntax
	Bound methods
	staticmethod()
	classmethod()
	The call() decorator
	Nesting decorators
	Class decorators before Python 2.6

	Constructing classes
	The empty class

	dict_from_class()
	The __dict__ of the empty class
	Is the doc-string part of the body?
	Definition of dict_from_class()

	property_from_class()
	About properties
	Definition of property_from_class()
	Using property_from_class()
	Unwanted keys

	Deconstructing classes
	type(name, bases, dict)
	Constructing the empty class
	Constructing any class
	Specifying __doc__, __name__ and __module__

	Subclassing int
	Mutable and immutable types
	Enumerated integers and named tuples
	The bool type
	Emulating bool - the easy part
	Emulating bool - what goes wrong
	Emulating bool - using __new__
	Understanding int.__new__

	Subclassing tuple
	The desired properties of Point
	Answer

	What happens when you call a class?
	Creation and initialisation
	The default __new__
	Summary

	Metaclass
	Every object has a type
	The metaclass of an object
	A trivial non-type metaclass
	A non-trivial example
	What's the point?

	The __metaclass__ attribute
	Automatic subclassing of object
	Review of type(name, bases, body) and class statement
	The basic principle of the __metaclass__
	A very silly example
	A less silly example
	A __metaclass__ gotcha
	A decorator example

	Decorators versus __metaclass__
	Bunch using decorators
	Bunch using __metaclass__
	How __metaclass__ works
	Discussion

	JavaScript objects
	Like Python classes
	Custom item methods
	On metaclass
	Never instantiated
	Conclusion

	Exercise: A line from a file
	Exercise: Property from class decorator
	Exercise: Named integers
	Exercise: Subset of a set
	Exercise: Class to and from class data
	Exercise: Your own class to class decorator

