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Zero Broker

Zero Latency (as close as possible...)

Zero administration

Zero cost

Zero waste
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Sockets

Unicast transports (inproc, ipc, tcp)

Multicast transports (pgm or epgm)

connect() and bind() are independent

They are asynchronous (with queues)

They express a certain "messaging pattern"

They are not necessarily one-to-one
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...and, of course...

Cross Platform (Linux, Windows, Mac, etc...)

Multiple Languages (c, c++, python, java, 
ruby, erlang, php, perl, ada, c#, lua, scala, 
objective-c, go, haskell, racket, cl, basic...)

OpenSource
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if you have a laptop...

http://www.zeromq.org/

http://zguide.zeromq.org/
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Publisher 
Subscriber

The PUB-SUB socket pair is asynchronous

when you use a SUB socket you must set a 
subscription using zmq_setsockopt and 
SUBSCRIBE

"slow joiner" symptom
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Workers

Always synchronize the start of the batch

The ventilator's PUSH socket distributes 
tasks to workers (load balancing)

The sink's PULL socket collects results from 
workers evenly (fair-queuing)
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Send 
messages 

back
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Allowed Patterns

PUB and SUB

REQ and REP

REQ and ROUTER

DEALER and REP

DEALER and ROUTER

DEALER and DEALER

ROUTER and ROUTER

PUSH and PULL

PAIR and PAIR
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A Publish-Subscribe Proxy
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Built-in Devices

QUEUE (request-reply broker.)

FORWARDER (pub-sub proxy server)

STREAMER (like FORWARDER but for 
pipeline flows)
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ØMQ : Sockets = Python : C++
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