
Implementing distributed 
applications with

...and some other bad guys...

Crippa Francesco

Monday, July 18, 2011



Scalability vs Complexity

Monday, July 18, 2011



1 Thread 2 Threads 2 Nodes 4 Nodes

Scalability vs Complexity
Com

plexity

what we want

Monday, July 18, 2011



1 Thread 2 Threads 2 Nodes 4 Nodes

Scalability vs Complexity
Com

plexity

reality

Monday, July 18, 2011



The Q in ØMQ

Monday, July 18, 2011



Monday, July 18, 2011



Monday, July 18, 2011



Monday, July 18, 2011



The Ø in ØMQ

Monday, July 18, 2011



The Ø in ØMQ

Zero Broker

Monday, July 18, 2011



The Ø in ØMQ

Zero Broker

Zero Latency (as close as possible...)

Monday, July 18, 2011



The Ø in ØMQ

Zero Broker

Zero Latency (as close as possible...)

Zero administration

Monday, July 18, 2011



The Ø in ØMQ

Zero Broker

Zero Latency (as close as possible...)

Zero administration

Zero cost

Monday, July 18, 2011



The Ø in ØMQ

Zero Broker

Zero Latency (as close as possible...)

Zero administration

Zero cost

Zero waste

Monday, July 18, 2011



Sockets

Monday, July 18, 2011



Sockets

Unicast transports (inproc, ipc, tcp)

Monday, July 18, 2011



Sockets

Unicast transports (inproc, ipc, tcp)

Multicast transports (pgm or epgm)

Monday, July 18, 2011



Sockets

Unicast transports (inproc, ipc, tcp)

Multicast transports (pgm or epgm)

connect() and bind() are independent

Monday, July 18, 2011



Sockets

Unicast transports (inproc, ipc, tcp)

Multicast transports (pgm or epgm)

connect() and bind() are independent

They are asynchronous (with queues)

Monday, July 18, 2011



Sockets

Unicast transports (inproc, ipc, tcp)

Multicast transports (pgm or epgm)

connect() and bind() are independent

They are asynchronous (with queues)

They express a certain "messaging pattern"

Monday, July 18, 2011



Sockets

Unicast transports (inproc, ipc, tcp)

Multicast transports (pgm or epgm)

connect() and bind() are independent

They are asynchronous (with queues)

They express a certain "messaging pattern"

They are not necessarily one-to-one

Monday, July 18, 2011



...and, of course...

Cross Platform (Linux, Windows, Mac, etc...)

Multiple Languages (c, c++, python, java, 
ruby, erlang, php, perl, ada, c#, lua, scala, 
objective-c, go, haskell, racket, cl, basic...)

OpenSource

Monday, July 18, 2011



if you have a laptop...

http://www.zeromq.org/

http://zguide.zeromq.org/

Monday, July 18, 2011

http://www.zeromq.org
http://www.zeromq.org


Basic Message Patterns

Monday, July 18, 2011



Monday, July 18, 2011



Server

Monday, July 18, 2011



Client

Monday, July 18, 2011



Demo

Monday, July 18, 2011



Basic Message Patterns

Monday, July 18, 2011



Monday, July 18, 2011



Server

Monday, July 18, 2011



Client

Monday, July 18, 2011



Demo

Monday, July 18, 2011



Publisher 
Subscriber

The PUB-SUB socket pair is asynchronous

when you use a SUB socket you must set a 
subscription using zmq_setsockopt and 
SUBSCRIBE

"slow joiner" symptom

Monday, July 18, 2011



Basic Message Patterns

Monday, July 18, 2011



Monday, July 18, 2011



Monday, July 18, 2011



Ventilator
Monday, July 18, 2011



Worker
Monday, July 18, 2011



Sink
Monday, July 18, 2011



Demo

Monday, July 18, 2011



Workers

Always synchronize the start of the batch

The ventilator's PUSH socket distributes 
tasks to workers (load balancing)

The sink's PULL socket collects results from 
workers evenly (fair-queuing)

Monday, July 18, 2011



Fair-Queuing

Monday, July 18, 2011



Basic Message Patterns

Monday, July 18, 2011



Send 
messages 

back

Monday, July 18, 2011



Monday, July 18, 2011



Monday, July 18, 2011



Demo

Monday, July 18, 2011



Allowed Patterns

PUB and SUB

REQ and REP

REQ and ROUTER

DEALER and REP

DEALER and ROUTER

DEALER and DEALER

ROUTER and ROUTER

PUSH and PULL

PAIR and PAIR

Monday, July 18, 2011



Scalability

Monday, July 18, 2011



Scalability

Monday, July 18, 2011



Scalability

Monday, July 18, 2011



Scalability

Monday, July 18, 2011



A Publish-Subscribe Proxy

Monday, July 18, 2011



Monday, July 18, 2011



Built-in Devices

QUEUE (request-reply broker.)

FORWARDER (pub-sub proxy server)

STREAMER (like FORWARDER but for 
pipeline flows)

Monday, July 18, 2011



Monday, July 18, 2011



Dynamic Scalability...

Monday, July 18, 2011



Dynamic Scalability...
LOWSCALABILITY!!!!

Monday, July 18, 2011



Dynamic Scalability...

Monday, July 18, 2011



ØMQ : Sockets = Python : C++

Monday, July 18, 2011


