
Greenlet-based concurrency

Goran Peretin
@gperetin

Who am I?

✤ Freelancer

✤ Interested in concurrent, parallel and
distributed systems

What is this about?

✤ understand what <buzzword> is

✤ when should you use <buzzword>

✤ concurrency as execution model (as
opposed to composition model)

There will be no...

✤ Turnkey solutions

✤ GIL

✤ Details

Buzzwords ahead!

✤ concurrent vs parallel execution

✤ cooperative vs preemptive
multitasking

✤ CPU bound vs IO bound task

✤ thread-based vs event-based
concurrency

Mandatory definitions

Parallel execution

✤ Simultaneous execution of multiple
tasks

✤ Must have multiple CPUs

Concurrent execution

✤ Executing multiple tasks in the same
time frame

✤ ... but not necessarily at the same
time

✤ Doesn’t require multiple CPU cores

Why do we want
concurrent execution?

✤ We need it - more tasks than CPUs

✤ CPU is much faster than anything
else

Thread-based
concurrecy

✤ Executing multiple threads in the
same time frame

✤ OS scheduler decides which thread
runs when

How OS scheduler
switches tasks?

✤ When current thread does IO
operation

✤ When current thread used up it’s
time slice

How OS scheduler
switches tasks?

✤ When current thread does IO
operation

✤ When current thread used up it’s
time slice

Preemptive multitasking

Mandatory GIL slide

✤ Global Interpreter Lock

✤ One Python interpreter can run just
one thread at any point in time

✤ Only problem for CPU bound tasks

CPU bound vs
IO bound

✤ CPU bound - time to complete a task
is determined by CPU speed

✤ calculating Fibonacci sequence, video
processing...

✤ IO bound - does a lot of IO, eg.
reading from disk, network requests...

✤ URL crawler, most web applications...

Python anyone?

✤ import threading

✤ Python threads - real OS threads

Houston, we have a...

Problem?

✤ Lots of threads

✤ Thousands

Benchmarks!

Sample programs

✤ Prog 1: spawn some number of
threads - each sleeps 200ms

✤ Prog 2: spawn some number of
threads - each sleeps 90s

Prog 1

✤ Sleep 200ms

of
threads

100 1K 10K 100K

Time 207 ms 327 ms 2.55 s 25.42 s

Prog 2

✤ Sleep 90s

of
threads

100 1K 10K 100K

RAM ~4.9 GB ~11.8 GB ~82GB ? (256GB)

... and more

✤ Number of threads is limited

✤ Preemptive multitasking

We need

✤ Fast to create

✤ Low memory footprint

✤ We decide when to switch

Green threads!

Green threads

✤ Not managed by OS

✤ 1:N with OS threads

✤ User threads, light-weight processes

Greenlets

✤ “...more primitive notion of micro-
thread with no implicit scheduling;
coroutines, in other words.”

✤ C extension

Greenlets

✤ Micro-thread

✤ No implicit scheduling

✤ Coroutines

Coroutine

✤ Function that can suspend it’s
execution and then later resume

✤ Can also be implemented in pure
Python (PEP 342)

✤ Coroutines decide when they want to
switch

Coroutine

✤ Function that can suspend it’s
execution and then later resume

✤ Can also be implemented in pure
Python (PEP 342)

✤ Coroutines decide when they want to
switch

Cooperative multitasking

Cooperative
multitasking

✤ Each task decides when to give
others a chance to run

✤ Ideal for I/O bound tasks

✤ Not so good for CPU bound tasks

Using greenlets

✤ We need something that will know
which greenlet should run next

✤ Our calls must not block

✤ We need something to notify us
when our call is done

Using greenlets

✤ We need something that will know
which greenlet should run next

✤ Our calls must not block

✤ We need something to notify us
when our call is done

Scheduler

Using greenlets

✤ We need something that will know
which greenlet should run next

✤ Our calls must not block

✤ We need something to notify us
when our call is done

Scheduler

Event lo
op

Event loop

✤ Listens for events from OS and
notifies your app

✤ Asynchronous

✤ Scheduler

✤ Event loop

Greenlets + ...

Gevent

Gevent

✤ “...coroutine-based Python
networking library that uses greenlet
to provide a high-level synchronous
API on top of the libevent event
loop.”

http://en.wikipedia.org/wiki/Coroutine
http://en.wikipedia.org/wiki/Coroutine
http://www.python.org/
http://www.python.org/
http://codespeak.net/py/0.9.2/greenlet.html
http://codespeak.net/py/0.9.2/greenlet.html
http://monkey.org/~provos/libevent/
http://monkey.org/~provos/libevent/

Prog 1
✤ Sleep 200ms

of
threads

100 1K 10K 100K

Time 207 ms 327 ms 2.55 s 25.42 s

of
Greenlets

100 1K 10K 100K

Time 204 ms 223 ms 421 ms 3.06 s

Prog 2
✤ Sleep 90s

of
threads

100 1K 10K 100K

RAM 4.9 GB 11.8 GB 82GB ? (256GB)

of
Greenlets

100 1K 10K 100K

Time 33 MB 41 MB 114 MB 858 MB

Gevent

✤ Monkey-patching

✤ Event loop

Disadvantages

✤ Monkey-patching

✤ Doesn’t work with C extensions

✤ Greenlet implementation details

✤ Hard to debug

Alternatives

✤ Twisted

✤ Tornado

✤ Callback based

PEP 3156 & Tulip

✤ Attempt to standardize event loop
API in Python

✤ Tulip is an implementation

Recap

✤ Concurrent execution helps with IO
bound applications

✤ Use threads if it works for you

✤ Use async library if you have lots of
connections

Thank you!

✤ Questions?

Resources

✤ http://dabeaz.com/coroutines/Coroutines.pdf

✤ http://www.gevent.org/

✤ http://greenlet.readthedocs.org/en/latest/

http://dabeaz.com/coroutines/Coroutines.pdf
http://dabeaz.com/coroutines/Coroutines.pdf
http://www.gevent.org/
http://www.gevent.org/
http://greenlet.readthedocs.org/en/latest/
http://greenlet.readthedocs.org/en/latest/

