
Developing cutting-edge applications

With PyQt
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What is Qt?

Qt Modules
QtCore QtGuiQtNetwork

QtOpenGLQtXml

QtXmlPatterns
QtMultimediaQtSql

QtWebKitQtTest

QtScript

Everything you need to create web-enabled desktop, 
mobile and embedded applications.

QtSvg

QtDeclarative

Qt is a cross-platform
application and UI Framework.
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Everything you need to create web-enabled desktop applications.

What is PyQt?

PyQt is a set of Python bindings
for Nokia's Qt application framework

and runs on all platforms supported by Qt.

SIP is a tool that makes it very easy
To create Python bindings

For C and C++ libraries.

PyQt v4 is available on all platforms
Under GNU GPL (v2 and v3) and a commercial lincese.

Unlink Qt, PyQt v4 is not available under the LGPL.
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Get Ready!
(How to Install Qt4 & PyQt4)

http://www.riverbankcomputing.co.uk
/software/pyqt/download

apt-get install python-qt4

yum install PyQt4

emerge dev-python/PyQt4
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from PyQt4.Qt import *

if __name__ == "__main__":
    app = QApplication([])

    label = QLabel("Hello World!")
    label.show()

    app.exec_()

hello/hello_world.py
PyQt Hello World
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What is a Widget?

 User interface object that represents an action 
and/or displays a piece of information

 Its value can be changed both programmatically 
(by the application) and by user-driven interaction.
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QWidget

 Base class for all widgets

 Receives events from the outside windowing 
system and draw itself

 Communication with the outside world occur via 
notifications (signals) and available actions (slots)
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Enter in a World of Widgets

QPushButton(“Push Me!”)

QCheckButton(“Check Me!”)

QRadioButton(“Check Only Me!”)

combo = QComboBox()
combo.addItem(“First entry”)
combo.addItem(“Second entry”);
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Enter in a World of Widgets

text_edit = QTextEdit()
text_edit.setHtml(“<h1>My Text</h1> Prova”);
text_edit.setPlainText(“Hello”);

line_edit = QLineEdit()
line_edit.setText(“Enter your username”)
...
username = line_edit.text()

line_edit = QLineEdit()
line_edit.setEchoMode(QLineEdit.Password)
...
password = line_edit.text()

spin = QDoubleSpinBox()
spin.setValue(5.07)
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How can I interact
with these widgets?



 

 11

Signals & Slots
Each object exposes 

a set of signals (notifications) 
and a set of slots (actions)

from PyQt4.Qt import *

def _onClick():
    print "Button Clicked!"

if __name__ == "__main__":
    app = QApplication([])

    button = QPushButton("Push Me!")
    QObject.connect(button, SIGNAL("clicked()"), _onClick)
    button.show()

    app.exec_()
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Sender Signal

Slot
(Signal Callback)

Signals & Slots

def _onClick():
    print "Button Clicked!"

    QObject.connect(button, SIGNAL("clicked()"), _onClick)
    button.show()

    app.exec_()

Each object exposes 
a set of signals (notifications) 

and a set of slots (actions)
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Signals & Slots

•Each object exposes a set of signals (notifications) 
and a set of slots (actions).

•Externally, signals can be connected to slots

•A signal is “emitted” when an object changes its 
internal state in a way that might be interesting to 
others

•A slot is an action, implemented by member 
function which might be connected to a signal (or 
used directly!)
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Group Widgets toghether!
(How to build a real UI)
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Positions of controls

 How do you position controls within a form?

 generically: children within their parent
 Old-skool solution: absolute positions x, y

 Impossibile to write GUI code by hand
 Impossible for users to stretch dialogs

 Qt supports absolute positions (.move(), .resize()) but 
gives a far batter solution. Automatic Position!
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Horizontal/Vertical Grouping!
def buildLayout():
   vlayout = QVBoxLayout()
   for i in range(5):
      vlayout.addWidget(QLabel("Label %d" % i))
   return vlayout

def buildLayout(): 
   hlayout = QHBoxLayout()
   for i in range(5):
      hlayout.addWidget(QLabel("Label %d" % i))
   return hlayout

QBoxLayout takes the space available
divides it up into a row of boxes,

and makes each managed widget fill 
one box.

if __name__ == "__main__":
    app = QApplication([])

    w = QWidget()
    w.setLayout(buildLayout())
    w.show()

    app.exec_()
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Grid grouping!

def buildLayout():
   grid_layout = QGridLayout()
   for row in range(3):
       for col in range(5):
           label = QLabel("Label %d,%d" % (row, col))
        grid_layout.addWidget(row, col, label)
  return grid_layout

The QGridLayout class lays out widgets in a grid.
It takes the space available, divides it up into rows and columns, 

and puts each widget it mnages into the correct cell.

if __name__ == "__main__":
    app = QApplication([])

    w = QWidget()
    w.setLayout(buildLayout())
    w.show()

    app.exec_()
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Form Grouping!

if __name__ == "__main__":
    app = QApplication([])

    w = QWidget()
    w.setLayout(buildLayout())
    w.show()

    app.exec_()

def buildLayout():
  form_layout = QFormLayout()
  form_layout.addRow("Name", QLineEdit())
  form_layout.addRow("Surname", QLineEdit())
  form_layout.addRow(QLabel("Custom text..."))
  return form_layout

QFormLayout lays out its children in a two-column form. 
The left column consists of labels 

and the right column consists of "field" widgets 
(line editors, spin boxes, etc.)
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Main Window & Dialogs
Menubar, Toolbar, and ...
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Toolbar
widget/toolbar.py

def onAction(n):
    print 'Clicked Action', n

if __name__ == '__main__':
    app = QApplication([])

    main_window = QMainWindow()

    tool_bar = main_window.addToolBar('MainToolbar')
    action1 = tool_bar.addAction(QIcon.fromTheme('document-new'), 'Action 1')
    action2 = tool_bar.addAction(QIcon.fromTheme('document-open'), 'Action 2')
    tool_bar.addSeparator()
    action3 = tool_bar.addAction(QIcon.fromTheme('document-print'), 'Action 3')

    QObject.connect(action1, SIGNAL('triggered()'), lambda: onAction(1))
    QObject.connect(action2, SIGNAL('triggered()'), lambda: onAction(2))
    QObject.connect(action3, SIGNAL('triggered()'), lambda: onAction(3))

    main_window.show()

    app.exec_()
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Menubardef fileAction():
    print 'Clicked File Action'

def helpAction():
    print 'Clicked Help Action'

if __name__ == '__main__':
    app = QApplication([])

    main_window = QMainWindow()

    menu_bar = main_window.menuBar()
    file_menu = menu_bar.addMenu("&File")
    file_action = file_menu.addAction('Test File Action')
    file_menu.addSeparator()
    quit_action = file_menu.addAction('Quit Action')

    help_menu = menu_bar.addMenu("&Help")
    help_action = help_menu.addAction('Test Help Action')

    QObject.connect(file_action, SIGNAL('triggered()'), fileAction)
    QObject.connect(quit_action, SIGNAL('triggered()'), app.quit)
    QObject.connect(help_action, SIGNAL('triggered()'), helpAction)

    main_window.show()

    app.exec_()

widget/menubar.py
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Dialogs
 Dialogs are windows that carry out short tasks (e.g. 

config panels or notifications to the user)

 QDialog

 They always are top-level widget
 Will open on center of its parent widget
 Have a “result” value
 Two very different kind of dialogs:

 Modal
 Modeless
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Modal dialogs
 Modal dialogs block input to other windows until the 

user closes the dialog

 Runs its own event loop (not concidentally, a modal 
dialog is started with dialog.exec())

 QDialog::exec()
 Accepted/Rejected
 (slots) accept(), reject()
 QDialog event loop ends with accept()/reject()

 Modal dialog explicitly require user intervention
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Modeless dialogs
 Operates independently of other windows

 No internal event loop
 A modeless dialog is started with dialog.show();
 Useful for tool windows (think search&replace dialog 

in word processors)
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Default Message Dialogs

QMessageBox.critical(parentWindow, 
               "Oh, snap!", 

                              "Too bad it didn't thunder when you said that.")

QMessageBox.information(parentWindow,
                                           "Current location", 
                                           "Your current location is: Florence")

QMessageBox.question(parentWindow,
                           "The document has been modified", 
                           "Do you want to save your changes?", 
                           QMessageBox.Save | QMessageBox.Cancel)

QMessageBox.warning(parentWindow, 
                                     "Low battery", 
                                      "Your computer has a low battery.")
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The Paint System
Qt's paint system enables painting

on screen and print devices
Using the same API
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Qt Painting System

QPainterQPainter

QPaintEngineQPaintEngine

QPaintDeviceQPaintDevice

• All kinds of drawing in Qt 
follow this pipeline

• Both built-in Qt widgets and 
custom ones.

• Also true for GL contexts, 
but they can be drawn on 
using direct GL commands 
too.

QPainter

QPaintEngine

QPaintDevice

• All kinds of drawing in Qt 
follow this pipeline

• Both built-in Qt widgets and 
custom ones.

• Also true for GL contexts, 
but they can be drawn on 
using direct GL commands 
too.
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Qt Painting System

• Implements the drawing of all 
shapes supported by Qt 2D 
engine, using the API of 
QPaintEngine

• Text, images, geometric 
primitives, Bézier curves, pie 
segments...

• Antialiasing, alpha blending, 
gradient filling, vector 
paths...they can be drawn on 
using direct GL commands 
too.

QPainter

QPaintEngine

QPaintDevice
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Qt Painting System

QPainter

QPaintEngine

QPaintDevice

• Provides a uniform drawing 
interface

• Draws primitives on painter 
backends

• Ellipses, lines, points, 
images, polygons...

• Software emulation for 
missing features

• Hidden from programmer
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Qt Painting System

QPainter

QPaintEngine

QPaintDevice

• Base class of all drawable 
object types (e.g. QWidget 
is a paint device)

• width, height, dpi, color 
depth...

• QWidget, QImage, QPixmap, 
QPrinter, ...
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Unleash the Artist in you!
if __name__ == '__main__':
    app = QApplication([])

    image = QImage(400, 300, QImage.Format_ARGB32)

    painter = QPainter(image)
    painter.fillRect(0, 0, 400, 300, Qt.white)
    painter.drawRect(100, 100, 200, 160)
    painter.drawLine(100, 100, 200, 25)
    painter.drawLine(300, 100, 200, 25)
    painter.drawRect(185, 220, 40, 40)
    painter.drawEllipse(150, 125, 35, 35)
    painter.drawEllipse(250, 125, 35, 35)
    painter.drawText(110, 75, 180, 25, 
                     Qt.AlignCenter, 
                     "Painting is fun!")
    painter.end()

    image.save('test.png')

painter/hello_paint.py
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From screen to Pdf, ps, Paper!

if __name__ == '__main__':
    app = QApplication([])
    
    printer = QPrinter(QPrinter.HighResolution)
    printer.setOutputFileName('test.pdf')
    printer.setPaperSize(QPrinter.A4)
    printer.setOrientation(QPrinter.Landscape)
    
    painter = QPainter(printer)
    
    rect = QRect(100, 100, printer.width() - 200, 200)
    painter.fillRect(rect, Qt.red)
    painter.drawText(rect, Qt.AlignCenter, "Draw on QPainter!")
    
    painter.end()

painter/printer.py
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Coordinate System

 Default coordinate system for QPaintDevices

 Origin on upper-left corner
 x values increase to the right, y values increase 

downwards
 Default unit

 1 pixel (raster)
 1 point (1/72”) (printers)

(0, 0) x

y

(4, 3)
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Coordinate Mapping

 QPainter works on logical coordinates

 QPaintDevices uses physical coordinates

 By default, they coincide

 In this case too, Qt does some work under the hood
 Coordinate mapping can be customized using

 QPainter transformations
 Window  viewport conversion→
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Coordinate Mapping

Rotate
60°

Scale
75%

Translate
(50, 50)

Transformation

Window-viewport conversion

(0.0, 0.0)

(0.0, 1.0)

(1.0, 0.0)

(1.0, 1.0)

(0.0, 0.0)

(0.0, 199.0)

(319.0, 0.0)

(319.0, 199.0)

Window-
viewport
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Logical Representation

 A logical primitive follows its mathematical model: its 
size (width, height) and coordinates are not dependent 
on the device it will be drawn on.

 Rectangle with top (4, 3) and size (2, 1):
 QRectF(x, y, width, height);

 QRectF(4.0, 3.0, 2.0, 1.0);

(0, 0) x

y

(4, 3)

(6, 4)
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Physical Representation 

 On real devices, we approximate logical representation 
using pixel or points

 We are unable to properly represent edges

 They should lay between two pixel rows
 Same thing for borders (edges with a size>0)
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Physical Representation 

 Qt painters approach the problem depending on 
rendering mode:

 Aliased rendering
 Anti-aliased rendering

 In aliased rendering, physical pixels are drawn using a 
(+0.5, +0.5) translation on logical ones
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Physical Representation (aliasesd)

 More generally, aliased rendering follows these rules:

 Edges: draw +0.5 right below logical pixels (as seen 
in previous slide)

 Borders (n pixels wide): draw symmetrically around 
logical points

 Borders (n+1 pixels wide): like n pixels width, then 
render spare pixels +0.5 right below
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Physical Representation (aliasesd)
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Coordinate transformation
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Drawing Features

 QPainter can draw a lot of shapes

 The way they are drawn is influenced by QPainter 
settings. The most important are:

 Brush (fills shapes)
 Pen (draws contours of shapes)
 Font (draws text)

 All of them are reset when begin() is called
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Qpainter Drawing Features

Rectangle = QRectF(10.0, 20.0, 80.0, 60.0);
startAngle = 30 * 16;
spanAngle = 120 * 16;
painter = QPainter(self);
painter.drawArc(rectangle, startAngle, spanAngle);

rectangle = QRectF(10.0, 20.0, 80.0, 60.0);
painter = QPainter(self);
painter.drawEllipse(rectangle);

line = QLineF(10.0, 80.0, 90.0, 20.0);
painter = QPainter(self);
painter.drawLine(line);

rectangle = QRectF(10.0, 20.0, 80.0, 60.0);
startAngle = 30 * 16;
spanAngle = 120 * 16;
painter = QPainter(self);
painter.drawPie(rectangle, startAngle, spanAngle);



 

 44

Qpainter Drawing Features

points = [
    QPointF(10.0, 80.0),
    QPointF(20.0, 10.0),
    QPointF(80.0, 30.0),
    QPointF(90.0, 70.0)
]
painter = QPainter(self);
painter.drawConvexPolygon(points); 

rectangle = QRectF(10.0, 20.0, 80.0, 60.0);
painter = QPainter(self);
painter.drawRect(rectangle);

rectangle = QRectF(10.0, 20.0, 80.0, 60.0);
painter = QPainter(self);
painter.drawRoundRect(rectangle);

painter = QPainter(self);
painter.drawText(rect, Qt.AlignCenter, tr("Qt by\nTrolltech"));
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Brush
 Defines the fill pattern for shapes

 Styles (mutually exclusive)

 Pattern
 Color (Qt predefined color or custom QColor)

 Gradient
 Substyle (linear, radial, conical) / color

 Texture
 Image
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Brush styles
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Pen
 Defines the color and stipple pattern used to draw lines 

and boundaries

 Can have a brush, to fill the strokes

 Boundary styles (cap style and join style)
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Pen styles
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Draw your UI
Custom Widgets & QPainter
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Track your Location!
class TrackingArea(QWidget):
    def __init__(self, parent=None):
        super(TrackingArea, self).__init(self, parent)
        self.setMouseTracking(True)

    # QMouseEvent: Mouse Handling (click, move, ...)
    def mousePressEvent(self, event):
        print 'Mouse Press', event.pos()

    def mouseReleaseEvent(self, event):
        print 'Mouse Release', event.pos()

    def mouseMoveEvent(self, event):
        print 'Mouse Move', event.pos()

    # QKeyEvent: Keyboard Handling (modifiers, key, ...)
    def keyPressEvent(self, event):
        print 'Key Press', event.key(), event.text()
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QtWebkit
Interact with the Web!
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A Bridge between Web & Desktop

With QtWebKit you can

• (easily!) embed a fully functional, 
standard compliant, web browser 
inside your application

• inspect/extract the content

• manipulate the web page

• rendering web pages on different 
devices (image, printer, ...)

WebKit is an
open source

state of the art
rendering engine

NOTE: JavaScriptCore is used as JS Engine, check QTWEBKIT-258 for v8 support...
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Display a WebPage in 3 lines

from PyQt4.QtWebKit import *
from PyQt4.Qt import *
import sys

if __name__ == '__main__':
    if len(sys.argv) < 2:
        print "Usage: simple_browser <url>"
        sys.exit(1)

    app = QApplication([])

    view = QWebView()
    view.load(QUrl(sys.argv[1]))
    view.show()

    app.exec_()

webkit/hello_browser.py
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...closer to a real Browser
class BrowserView(QWidget):
    def __init__(self, parent=None):
        super(BrowserView, self).__init__(parent)

        vlayout = QVBoxLayout()
        self.setLayout(vlayout)

        self.urledit = QLineEdit()
        vlayout.addWidget(self.urledit)

        self.webview = QWebView()
        vlayout.addWidget(self.webview, stretch=1)

        QObject.connect(self.urledit, 
                        SIGNAL('returnPressed()'), self._loadUrl)

    def _loadUrl(self):
        self.webview.load(QUrl(self.urledit.text()))

webkit/usable_browser.py
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Event Loop & WebPage load!
webkit/web_screenshot.py

def _loadWebPage(url):
    eloop = QEventLoop()
    load_finished = []

    def _loadFinished(ok):
        load_finished.append(ok)
        eloop.quit()

    page = QWebPage()
    main_frame = page.mainFrame()
    main_frame.setScrollBarPolicy(Qt.Vertical, Qt.ScrollBarAlwaysOff)
    main_frame.setScrollBarPolicy(Qt.Horizontal, Qt.ScrollBarAlwaysOff)
    QObject.connect(page, SIGNAL('loadFinished(bool)'), _loadFinished)
    main_frame.load(url)

    if not load_finished:
        eloop.exec_()

    return page

Load WebPage in a sync way.
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Take a Web shot!
webkit/web_screenshot.py

def _webScreenshot(url):
    page = _loadWebPage(url)
    main_frame = page.mainFrame()

    size = main_frame.contentsSize()
    size = QSize(max(size.width(), 800), min(size.height(), 2048))
    page.setViewportSize(size)

    image = QImage(size, QImage.Format_ARGB32_Premultiplied)
    painter = QPainter(image)
    main_frame.render(painter)
    painter.end()

    return image
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QtOpenGL
Easy to use OpenGL in Qt applications
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Qt and OpenGL
 QGLWidget: a more direct approach to OpenGL 

rendering

 You have a choice between drawing with QPainter and 
direct GL commands

 Qt does not have an in-house implementation of 
OpenGL: the system one will be used.
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QGLWidget
 QGLWidget is a widget for rendering OpenGL graphics 

and integrating it into a Qt application

 Its associated QPaintEngine uses OpenGL
 All QPainter drawing primitives are internally 

translated by the engine to OpenGL commands
 You can get 2D rendering accelerated via OpenGL 

simply by using a QGLWidget instead of a QWidget 
and redefining QGLWidget.paintEvent
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QGLWidget revisited
 Receives paint events like normal QWidgets

 QGLWidget.paintEvent must not be redefined

 Three convenient methods exist

 initializeGL
 resizeGL
 paintGL

 Convenience methods qglClearColor, qglColor
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QGLWidget revisited
 initializeGL is called just once, immediately before a 

resizeGL/paintGL sequence

 first-time initialization goes here

def initializeGL(self):

qglClearColor(Qt.black)

glShadeModel(GL_FLAT)

glEnable(GL_DEPTH_TEST)
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QGLWidget revisited
 resizeGL immediately follows an initializeGL, and is also 

called if the widget is resized
def resizeGL(width, height):

glViewport(0, 0, width, height)

glMatrixMode(GL_PROJECTION)

glLoadIdentity()

ar = width / height

glFrustum(-ar, ar, -1.0, 1.0, 4.0, 45.0)

glMatrixMode(GL_MODELVIEW)
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QGLWidget revisited
 paintGL is called everytime the widget needs to be 

redrawn
def paintGL(self):

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)

glMatrixMode(GL_MODELVIEW)

glLoadIdentity()

# glTranslate/glRotate/...

glBegin(GL_TRIANGLES)

# qglColor(QColor(...))

# glVertex3f...

glEnd()
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QGLWidget revisited
 Everything seen is standard OpenGL

 Except for the qglClearColor and qglColor helpers, 
but you can use the common glColor* calls instead

 Since QGLWidget is a QWidget, it is also possible to 
redefine custom event callbacks to handle mouse, 
keyboard, etc...
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QGLWidget revisited
 In application with more than one QGLWidget, it is 

possible to share OpenGL display lists between GL 
contexts

w1 = QGLWidget(self)

w2 = QGLWidget(self, w1)

 w2 will share its display lists with w1

 No overhead, the implementation simply shares 
OpenGL ids
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Overpainting
 Overpainting is an approach that allows to use a 

QGLWidget both as a 3D view with OpenGL and a 2D 
view with QPainter.

 Both 2D and 3D drawing work on the same GL context

 We redefine initializeGL, resizeGL and paintEvent 
directly (not paintGL)
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Overpainting (live demo)
 QGLWidget.paintEvent

 Push GL attributes and matrices
 Perform typical initializeGL operations
 Perform typical resizeGL operations
 Draw the 3D scene
 Pop GL attributes and matrices
 Create and “begin” a QPainter
 Draw the 2D scene overpainting with QPainter
 “End” the QPainter
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Mix QPainter and native 
OpenGL

 OpenGL is a giant state machine

 Avoid getting in the way of the underlying OpenGL Qt 
paint engine

 Since Qt 4.6:

 QPainter.beginNativePainting()
 QPainter.endNativePainting()
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QtDeclarative
Qt Quick & QML



Qt Quick

 Technology to build slick UIs

 Built on Qt technology stack

 Qt Quick = QML + tools



QML

 Declarative language to describe UIs

 Visual editor available (1:1 connection)

 Integration with PyQt

 “Pure” applications (qmlviewer mode)

 “Hybrid” applications

 QObject slots can be called from QML
 QObject prop changes are notified to QML



How to use

# Create the QML user interface.
view = QDeclarativeView()
view.setSource(QUrl('app.qml'))

# Set to size of the view
view.setResizeMode(QDeclarativeView.SizeRootObjectToView)

# Show the QML user interface.
view.show()
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Internationalization  with Qt
Making the application usable 

by people in countries other than one's own.



What is i18n about?

 Embracing a specific national environment:

 Language
 Line break behaviour
 Writing direction
 Conventions

 ...without hampering development



(True) Horror Story

We're in 2002, and a big Italian company wants 
to localize their CAD program in Spanish.

If only it wasn't for...



(True) Horror Story

 Strings were initially hardcoded in Italian, English was 
retrofitted at some point...

 ...with lots of if/else statements

 First try: add another else branch for each string in 
code (...)

 Second try: tool to produce multiple codebases – one 
for each language (...)

 AFAIK still unfinished two years later



All we need is a good workflow

 Developers produce i18n-ready code

 With no codebase pollution
 Translators translate strings

 Iteratively (code and strings can change!)
 No technical knowledge needed

 The framework does the rest
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Developers' step 1

 QObject.tr()
 Parse-time: marks strings
 Run-time: translates strings

 Not everything is a QObject...
 QCoreApplication.translate()
 QtCore.QT_TR_NOOP()
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Developers' step 2

 Use QString for all user visible text
 QString are Unicode strings  transparent →

processing of strings (reg exp, split etc)
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Developers' step 3

 Use QString.arg() for dynamic text
 QString.arg() allows easy argument 

reordering

def showProgress(self done, total, current_file):

     label.setText(self.tr("%1 of %2 files copied.\nCopying: %3")
           .arg(done)
           .arg(total)
           .arg(currentFile))
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Some glue

 Add a TRANSLATIONS entry to .pro
 Run pylupdate4 to extract a .ts file
 Send .ts file to translators
 Run lrelease to produce translated binary 

files
 Set up a QTranslator
 QCoreApplication.installTranslator()
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Translators' (only) step

 Open .ts file with Linguist

 Fill the missing translations

 There is no step 3 

 Developer: “...hey that's not fair!”
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Some case studies

 Nearing the 2.0 release:

 Parse again with pylupdate4
 Fill only the missing translations

 Wanting to add a language

 Add that language to TRANSLATIONS
 Run pylupdate4, translate the .ts file, lrelease
 This time it's a fairy tale!

 Update language on the fly

 installTranslator sends a changeEvent
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Gotchas

 ::tr assumes latin-1

 What about Designer files?
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PyInstaller
Distribute your Python programs 

as a stand-alone executables
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Wrapping things up

 PyQt programs are often composed of:

 Python source
 PyQt libraries (.dll or .so)
 Data files

 How to distribute them?

 “Customer please apt-get python and pyqt”
 “What is apt-get?”
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Solution: PyInstaller
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PyInstaller crash course

 Get PyInstaller 1.5

 python Configure.py

 python Makespec.py <program>.py

 python Build.py <program>.spec

 ./dist/program/program
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Feature reel

 Free as in beer and freedom

 Multiplatform

 PyInstaller exclusive
 Built-in support for 3rd party libraries

 PyInstaller exclusive
 Compression (upx)
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Under the hood

 SPEC file: PyInstaller project (in Python)

 one-file / one-dir modes
 windowed / console
 debug
 icon, verison, etc...
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Dependencies

 Entry-point module in Analysis call

 Recursively analyze bytecode

 Explicit imports
 ctypes LoadLibrary

 Hidden imports

 Library-specific hooks
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“Wait, I'm still giving my 
source away!”

 No source code

 Still, bytecode can be extracted
 Crypt support

 Custom code needed for this



 

 

GRAZIE !GRAZIE !

Contatti

Mail: info@develer.com

Phone: +39-055-3984627

Fax: +39 178 6003614 

http://www.develer.com

Develer S.r.l.
Via Mugellese 1/A

50013 Campi Bisenzio
Firenze - Italia 

mailto:info@develer.com
http://www.develer.com/
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