
Developing cutting-edge applications

With PyQt

 2

What is Qt?

Qt Modules
QtCore QtGuiQtNetwork

QtOpenGLQtXml

QtXmlPatterns
QtMultimediaQtSql

QtWebKitQtTest

QtScript

Everything you need to create web-enabled desktop,
mobile and embedded applications.

QtSvg

QtDeclarative

Qt is a cross-platform
application and UI Framework.

 3

Everything you need to create web-enabled desktop applications.

What is PyQt?

PyQt is a set of Python bindings
for Nokia's Qt application framework

and runs on all platforms supported by Qt.

SIP is a tool that makes it very easy
To create Python bindings

For C and C++ libraries.

PyQt v4 is available on all platforms
Under GNU GPL (v2 and v3) and a commercial lincese.

Unlink Qt, PyQt v4 is not available under the LGPL.

 4

Get Ready!
(How to Install Qt4 & PyQt4)

http://www.riverbankcomputing.co.uk
/software/pyqt/download

apt-get install python-qt4

yum install PyQt4

emerge dev-python/PyQt4

 5

from PyQt4.Qt import *

if __name__ == "__main__":
 app = QApplication([])

 label = QLabel("Hello World!")
 label.show()

 app.exec_()

hello/hello_world.py
PyQt Hello World

 6

What is a Widget?

 User interface object that represents an action
and/or displays a piece of information

 Its value can be changed both programmatically
(by the application) and by user-driven interaction.

 7

QWidget

 Base class for all widgets

 Receives events from the outside windowing
system and draw itself

 Communication with the outside world occur via
notifications (signals) and available actions (slots)

 8

Enter in a World of Widgets

QPushButton(“Push Me!”)

QCheckButton(“Check Me!”)

QRadioButton(“Check Only Me!”)

combo = QComboBox()
combo.addItem(“First entry”)
combo.addItem(“Second entry”);

 9

Enter in a World of Widgets

text_edit = QTextEdit()
text_edit.setHtml(“<h1>My Text</h1> Prova”);
text_edit.setPlainText(“Hello”);

line_edit = QLineEdit()
line_edit.setText(“Enter your username”)
...
username = line_edit.text()

line_edit = QLineEdit()
line_edit.setEchoMode(QLineEdit.Password)
...
password = line_edit.text()

spin = QDoubleSpinBox()
spin.setValue(5.07)

 10

How can I interact
with these widgets?

 11

Signals & Slots
Each object exposes

a set of signals (notifications)
and a set of slots (actions)

from PyQt4.Qt import *

def _onClick():
 print "Button Clicked!"

if __name__ == "__main__":
 app = QApplication([])

 button = QPushButton("Push Me!")
 QObject.connect(button, SIGNAL("clicked()"), _onClick)
 button.show()

 app.exec_()

 12

Sender Signal

Slot
(Signal Callback)

Signals & Slots

def _onClick():
 print "Button Clicked!"

 QObject.connect(button, SIGNAL("clicked()"), _onClick)
 button.show()

 app.exec_()

Each object exposes
a set of signals (notifications)

and a set of slots (actions)

 13

Signals & Slots

•Each object exposes a set of signals (notifications)
and a set of slots (actions).

•Externally, signals can be connected to slots

•A signal is “emitted” when an object changes its
internal state in a way that might be interesting to
others

•A slot is an action, implemented by member
function which might be connected to a signal (or
used directly!)

 14

Group Widgets toghether!
(How to build a real UI)

 15

Positions of controls

 How do you position controls within a form?

 generically: children within their parent
 Old-skool solution: absolute positions x, y

 Impossibile to write GUI code by hand
 Impossible for users to stretch dialogs

 Qt supports absolute positions (.move(), .resize()) but
gives a far batter solution. Automatic Position!

 16

Horizontal/Vertical Grouping!
def buildLayout():
 vlayout = QVBoxLayout()
 for i in range(5):
 vlayout.addWidget(QLabel("Label %d" % i))
 return vlayout

def buildLayout():
 hlayout = QHBoxLayout()
 for i in range(5):
 hlayout.addWidget(QLabel("Label %d" % i))
 return hlayout

QBoxLayout takes the space available
divides it up into a row of boxes,

and makes each managed widget fill
one box.

if __name__ == "__main__":
 app = QApplication([])

 w = QWidget()
 w.setLayout(buildLayout())
 w.show()

 app.exec_()

 17

Grid grouping!

def buildLayout():
 grid_layout = QGridLayout()
 for row in range(3):
 for col in range(5):
 label = QLabel("Label %d,%d" % (row, col))
 grid_layout.addWidget(row, col, label)
 return grid_layout

The QGridLayout class lays out widgets in a grid.
It takes the space available, divides it up into rows and columns,

and puts each widget it mnages into the correct cell.

if __name__ == "__main__":
 app = QApplication([])

 w = QWidget()
 w.setLayout(buildLayout())
 w.show()

 app.exec_()

 18

Form Grouping!

if __name__ == "__main__":
 app = QApplication([])

 w = QWidget()
 w.setLayout(buildLayout())
 w.show()

 app.exec_()

def buildLayout():
 form_layout = QFormLayout()
 form_layout.addRow("Name", QLineEdit())
 form_layout.addRow("Surname", QLineEdit())
 form_layout.addRow(QLabel("Custom text..."))
 return form_layout

QFormLayout lays out its children in a two-column form.
The left column consists of labels

and the right column consists of "field" widgets
(line editors, spin boxes, etc.)

 19

Main Window & Dialogs
Menubar, Toolbar, and ...

 20

Toolbar
widget/toolbar.py

def onAction(n):
 print 'Clicked Action', n

if __name__ == '__main__':
 app = QApplication([])

 main_window = QMainWindow()

 tool_bar = main_window.addToolBar('MainToolbar')
 action1 = tool_bar.addAction(QIcon.fromTheme('document-new'), 'Action 1')
 action2 = tool_bar.addAction(QIcon.fromTheme('document-open'), 'Action 2')
 tool_bar.addSeparator()
 action3 = tool_bar.addAction(QIcon.fromTheme('document-print'), 'Action 3')

 QObject.connect(action1, SIGNAL('triggered()'), lambda: onAction(1))
 QObject.connect(action2, SIGNAL('triggered()'), lambda: onAction(2))
 QObject.connect(action3, SIGNAL('triggered()'), lambda: onAction(3))

 main_window.show()

 app.exec_()

 21

Menubardef fileAction():
 print 'Clicked File Action'

def helpAction():
 print 'Clicked Help Action'

if __name__ == '__main__':
 app = QApplication([])

 main_window = QMainWindow()

 menu_bar = main_window.menuBar()
 file_menu = menu_bar.addMenu("&File")
 file_action = file_menu.addAction('Test File Action')
 file_menu.addSeparator()
 quit_action = file_menu.addAction('Quit Action')

 help_menu = menu_bar.addMenu("&Help")
 help_action = help_menu.addAction('Test Help Action')

 QObject.connect(file_action, SIGNAL('triggered()'), fileAction)
 QObject.connect(quit_action, SIGNAL('triggered()'), app.quit)
 QObject.connect(help_action, SIGNAL('triggered()'), helpAction)

 main_window.show()

 app.exec_()

widget/menubar.py

 22

Dialogs
 Dialogs are windows that carry out short tasks (e.g.

config panels or notifications to the user)

 QDialog

 They always are top-level widget
 Will open on center of its parent widget
 Have a “result” value
 Two very different kind of dialogs:

 Modal
 Modeless

 23

Modal dialogs
 Modal dialogs block input to other windows until the

user closes the dialog

 Runs its own event loop (not concidentally, a modal
dialog is started with dialog.exec())

 QDialog::exec()
 Accepted/Rejected
 (slots) accept(), reject()
 QDialog event loop ends with accept()/reject()

 Modal dialog explicitly require user intervention

 24

Modeless dialogs
 Operates independently of other windows

 No internal event loop
 A modeless dialog is started with dialog.show();
 Useful for tool windows (think search&replace dialog

in word processors)

 25

Default Message Dialogs

QMessageBox.critical(parentWindow,
 "Oh, snap!",

 "Too bad it didn't thunder when you said that.")

QMessageBox.information(parentWindow,
 "Current location",
 "Your current location is: Florence")

QMessageBox.question(parentWindow,
 "The document has been modified",
 "Do you want to save your changes?",
 QMessageBox.Save | QMessageBox.Cancel)

QMessageBox.warning(parentWindow,
 "Low battery",
 "Your computer has a low battery.")

 26

The Paint System
Qt's paint system enables painting

on screen and print devices
Using the same API

 27

Qt Painting System

QPainterQPainter

QPaintEngineQPaintEngine

QPaintDeviceQPaintDevice

• All kinds of drawing in Qt
follow this pipeline

• Both built-in Qt widgets and
custom ones.

• Also true for GL contexts,
but they can be drawn on
using direct GL commands
too.

QPainter

QPaintEngine

QPaintDevice

• All kinds of drawing in Qt
follow this pipeline

• Both built-in Qt widgets and
custom ones.

• Also true for GL contexts,
but they can be drawn on
using direct GL commands
too.

 28

Qt Painting System

• Implements the drawing of all
shapes supported by Qt 2D
engine, using the API of
QPaintEngine

• Text, images, geometric
primitives, Bézier curves, pie
segments...

• Antialiasing, alpha blending,
gradient filling, vector
paths...they can be drawn on
using direct GL commands
too.

QPainter

QPaintEngine

QPaintDevice

 29

Qt Painting System

QPainter

QPaintEngine

QPaintDevice

• Provides a uniform drawing
interface

• Draws primitives on painter
backends

• Ellipses, lines, points,
images, polygons...

• Software emulation for
missing features

• Hidden from programmer

 30

Qt Painting System

QPainter

QPaintEngine

QPaintDevice

• Base class of all drawable
object types (e.g. QWidget
is a paint device)

• width, height, dpi, color
depth...

• QWidget, QImage, QPixmap,
QPrinter, ...

 31

Unleash the Artist in you!
if __name__ == '__main__':
 app = QApplication([])

 image = QImage(400, 300, QImage.Format_ARGB32)

 painter = QPainter(image)
 painter.fillRect(0, 0, 400, 300, Qt.white)
 painter.drawRect(100, 100, 200, 160)
 painter.drawLine(100, 100, 200, 25)
 painter.drawLine(300, 100, 200, 25)
 painter.drawRect(185, 220, 40, 40)
 painter.drawEllipse(150, 125, 35, 35)
 painter.drawEllipse(250, 125, 35, 35)
 painter.drawText(110, 75, 180, 25,
 Qt.AlignCenter,
 "Painting is fun!")
 painter.end()

 image.save('test.png')

painter/hello_paint.py

 32

From screen to Pdf, ps, Paper!

if __name__ == '__main__':
 app = QApplication([])

 printer = QPrinter(QPrinter.HighResolution)
 printer.setOutputFileName('test.pdf')
 printer.setPaperSize(QPrinter.A4)
 printer.setOrientation(QPrinter.Landscape)

 painter = QPainter(printer)

 rect = QRect(100, 100, printer.width() - 200, 200)
 painter.fillRect(rect, Qt.red)
 painter.drawText(rect, Qt.AlignCenter, "Draw on QPainter!")

 painter.end()

painter/printer.py

 33

Coordinate System

 Default coordinate system for QPaintDevices

 Origin on upper-left corner
 x values increase to the right, y values increase

downwards
 Default unit

 1 pixel (raster)
 1 point (1/72”) (printers)

(0, 0) x

y

(4, 3)

 34

Coordinate Mapping

 QPainter works on logical coordinates

 QPaintDevices uses physical coordinates

 By default, they coincide

 In this case too, Qt does some work under the hood
 Coordinate mapping can be customized using

 QPainter transformations
 Window viewport conversion→

 35

Coordinate Mapping

Rotate
60°

Scale
75%

Translate
(50, 50)

Transformation

Window-viewport conversion

(0.0, 0.0)

(0.0, 1.0)

(1.0, 0.0)

(1.0, 1.0)

(0.0, 0.0)

(0.0, 199.0)

(319.0, 0.0)

(319.0, 199.0)

Window-
viewport

 36

Logical Representation

 A logical primitive follows its mathematical model: its
size (width, height) and coordinates are not dependent
on the device it will be drawn on.

 Rectangle with top (4, 3) and size (2, 1):
 QRectF(x, y, width, height);

 QRectF(4.0, 3.0, 2.0, 1.0);

(0, 0) x

y

(4, 3)

(6, 4)

 37

Physical Representation

 On real devices, we approximate logical representation
using pixel or points

 We are unable to properly represent edges

 They should lay between two pixel rows
 Same thing for borders (edges with a size>0)

 38

Physical Representation

 Qt painters approach the problem depending on
rendering mode:

 Aliased rendering
 Anti-aliased rendering

 In aliased rendering, physical pixels are drawn using a
(+0.5, +0.5) translation on logical ones

 39

Physical Representation (aliasesd)

 More generally, aliased rendering follows these rules:

 Edges: draw +0.5 right below logical pixels (as seen
in previous slide)

 Borders (n pixels wide): draw symmetrically around
logical points

 Borders (n+1 pixels wide): like n pixels width, then
render spare pixels +0.5 right below

 40

Physical Representation (aliasesd)

 41

Coordinate transformation

 42

Drawing Features

 QPainter can draw a lot of shapes

 The way they are drawn is influenced by QPainter
settings. The most important are:

 Brush (fills shapes)
 Pen (draws contours of shapes)
 Font (draws text)

 All of them are reset when begin() is called

 43

Qpainter Drawing Features

Rectangle = QRectF(10.0, 20.0, 80.0, 60.0);
startAngle = 30 * 16;
spanAngle = 120 * 16;
painter = QPainter(self);
painter.drawArc(rectangle, startAngle, spanAngle);

rectangle = QRectF(10.0, 20.0, 80.0, 60.0);
painter = QPainter(self);
painter.drawEllipse(rectangle);

line = QLineF(10.0, 80.0, 90.0, 20.0);
painter = QPainter(self);
painter.drawLine(line);

rectangle = QRectF(10.0, 20.0, 80.0, 60.0);
startAngle = 30 * 16;
spanAngle = 120 * 16;
painter = QPainter(self);
painter.drawPie(rectangle, startAngle, spanAngle);

 44

Qpainter Drawing Features

points = [
 QPointF(10.0, 80.0),
 QPointF(20.0, 10.0),
 QPointF(80.0, 30.0),
 QPointF(90.0, 70.0)
]
painter = QPainter(self);
painter.drawConvexPolygon(points);

rectangle = QRectF(10.0, 20.0, 80.0, 60.0);
painter = QPainter(self);
painter.drawRect(rectangle);

rectangle = QRectF(10.0, 20.0, 80.0, 60.0);
painter = QPainter(self);
painter.drawRoundRect(rectangle);

painter = QPainter(self);
painter.drawText(rect, Qt.AlignCenter, tr("Qt by\nTrolltech"));

 45

Brush
 Defines the fill pattern for shapes

 Styles (mutually exclusive)

 Pattern
 Color (Qt predefined color or custom QColor)

 Gradient
 Substyle (linear, radial, conical) / color

 Texture
 Image

 46

Brush styles

 47

Pen
 Defines the color and stipple pattern used to draw lines

and boundaries

 Can have a brush, to fill the strokes

 Boundary styles (cap style and join style)

 48

Pen styles

 49

Draw your UI
Custom Widgets & QPainter

 50

Track your Location!
class TrackingArea(QWidget):
 def __init__(self, parent=None):
 super(TrackingArea, self).__init(self, parent)
 self.setMouseTracking(True)

 # QMouseEvent: Mouse Handling (click, move, ...)
 def mousePressEvent(self, event):
 print 'Mouse Press', event.pos()

 def mouseReleaseEvent(self, event):
 print 'Mouse Release', event.pos()

 def mouseMoveEvent(self, event):
 print 'Mouse Move', event.pos()

 # QKeyEvent: Keyboard Handling (modifiers, key, ...)
 def keyPressEvent(self, event):
 print 'Key Press', event.key(), event.text()

 51

QtWebkit
Interact with the Web!

 52

A Bridge between Web & Desktop

With QtWebKit you can

• (easily!) embed a fully functional,
standard compliant, web browser
inside your application

• inspect/extract the content

• manipulate the web page

• rendering web pages on different
devices (image, printer, ...)

WebKit is an
open source

state of the art
rendering engine

NOTE: JavaScriptCore is used as JS Engine, check QTWEBKIT-258 for v8 support...

 53

Display a WebPage in 3 lines

from PyQt4.QtWebKit import *
from PyQt4.Qt import *
import sys

if __name__ == '__main__':
 if len(sys.argv) < 2:
 print "Usage: simple_browser <url>"
 sys.exit(1)

 app = QApplication([])

 view = QWebView()
 view.load(QUrl(sys.argv[1]))
 view.show()

 app.exec_()

webkit/hello_browser.py

 54

...closer to a real Browser
class BrowserView(QWidget):
 def __init__(self, parent=None):
 super(BrowserView, self).__init__(parent)

 vlayout = QVBoxLayout()
 self.setLayout(vlayout)

 self.urledit = QLineEdit()
 vlayout.addWidget(self.urledit)

 self.webview = QWebView()
 vlayout.addWidget(self.webview, stretch=1)

 QObject.connect(self.urledit,
 SIGNAL('returnPressed()'), self._loadUrl)

 def _loadUrl(self):
 self.webview.load(QUrl(self.urledit.text()))

webkit/usable_browser.py

 55

Event Loop & WebPage load!
webkit/web_screenshot.py

def _loadWebPage(url):
 eloop = QEventLoop()
 load_finished = []

 def _loadFinished(ok):
 load_finished.append(ok)
 eloop.quit()

 page = QWebPage()
 main_frame = page.mainFrame()
 main_frame.setScrollBarPolicy(Qt.Vertical, Qt.ScrollBarAlwaysOff)
 main_frame.setScrollBarPolicy(Qt.Horizontal, Qt.ScrollBarAlwaysOff)
 QObject.connect(page, SIGNAL('loadFinished(bool)'), _loadFinished)
 main_frame.load(url)

 if not load_finished:
 eloop.exec_()

 return page

Load WebPage in a sync way.

 56

Take a Web shot!
webkit/web_screenshot.py

def _webScreenshot(url):
 page = _loadWebPage(url)
 main_frame = page.mainFrame()

 size = main_frame.contentsSize()
 size = QSize(max(size.width(), 800), min(size.height(), 2048))
 page.setViewportSize(size)

 image = QImage(size, QImage.Format_ARGB32_Premultiplied)
 painter = QPainter(image)
 main_frame.render(painter)
 painter.end()

 return image

 57

QtOpenGL
Easy to use OpenGL in Qt applications

 58

Qt and OpenGL
 QGLWidget: a more direct approach to OpenGL

rendering

 You have a choice between drawing with QPainter and
direct GL commands

 Qt does not have an in-house implementation of
OpenGL: the system one will be used.

 59

QGLWidget
 QGLWidget is a widget for rendering OpenGL graphics

and integrating it into a Qt application

 Its associated QPaintEngine uses OpenGL
 All QPainter drawing primitives are internally

translated by the engine to OpenGL commands
 You can get 2D rendering accelerated via OpenGL

simply by using a QGLWidget instead of a QWidget
and redefining QGLWidget.paintEvent

 60

QGLWidget revisited
 Receives paint events like normal QWidgets

 QGLWidget.paintEvent must not be redefined

 Three convenient methods exist

 initializeGL
 resizeGL
 paintGL

 Convenience methods qglClearColor, qglColor

 61

QGLWidget revisited
 initializeGL is called just once, immediately before a

resizeGL/paintGL sequence

 first-time initialization goes here

def initializeGL(self):

qglClearColor(Qt.black)

glShadeModel(GL_FLAT)

glEnable(GL_DEPTH_TEST)

 62

QGLWidget revisited
 resizeGL immediately follows an initializeGL, and is also

called if the widget is resized
def resizeGL(width, height):

glViewport(0, 0, width, height)

glMatrixMode(GL_PROJECTION)

glLoadIdentity()

ar = width / height

glFrustum(-ar, ar, -1.0, 1.0, 4.0, 45.0)

glMatrixMode(GL_MODELVIEW)

 63

QGLWidget revisited
 paintGL is called everytime the widget needs to be

redrawn
def paintGL(self):

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)

glMatrixMode(GL_MODELVIEW)

glLoadIdentity()

glTranslate/glRotate/...

glBegin(GL_TRIANGLES)

qglColor(QColor(...))

glVertex3f...

glEnd()

 64

QGLWidget revisited
 Everything seen is standard OpenGL

 Except for the qglClearColor and qglColor helpers,
but you can use the common glColor* calls instead

 Since QGLWidget is a QWidget, it is also possible to
redefine custom event callbacks to handle mouse,
keyboard, etc...

 65

QGLWidget revisited
 In application with more than one QGLWidget, it is

possible to share OpenGL display lists between GL
contexts

w1 = QGLWidget(self)

w2 = QGLWidget(self, w1)

 w2 will share its display lists with w1

 No overhead, the implementation simply shares
OpenGL ids

 66

Overpainting
 Overpainting is an approach that allows to use a

QGLWidget both as a 3D view with OpenGL and a 2D
view with QPainter.

 Both 2D and 3D drawing work on the same GL context

 We redefine initializeGL, resizeGL and paintEvent
directly (not paintGL)

 67

Overpainting (live demo)
 QGLWidget.paintEvent

 Push GL attributes and matrices
 Perform typical initializeGL operations
 Perform typical resizeGL operations
 Draw the 3D scene
 Pop GL attributes and matrices
 Create and “begin” a QPainter
 Draw the 2D scene overpainting with QPainter
 “End” the QPainter

 68

Mix QPainter and native
OpenGL

 OpenGL is a giant state machine

 Avoid getting in the way of the underlying OpenGL Qt
paint engine

 Since Qt 4.6:

 QPainter.beginNativePainting()
 QPainter.endNativePainting()

 69

QtDeclarative
Qt Quick & QML

Qt Quick

 Technology to build slick UIs

 Built on Qt technology stack

 Qt Quick = QML + tools

QML

 Declarative language to describe UIs

 Visual editor available (1:1 connection)

 Integration with PyQt

 “Pure” applications (qmlviewer mode)

 “Hybrid” applications

 QObject slots can be called from QML
 QObject prop changes are notified to QML

How to use

Create the QML user interface.
view = QDeclarativeView()
view.setSource(QUrl('app.qml'))

Set to size of the view
view.setResizeMode(QDeclarativeView.SizeRootObjectToView)

Show the QML user interface.
view.show()

 73

Internationalization with Qt
Making the application usable

by people in countries other than one's own.

What is i18n about?

 Embracing a specific national environment:

 Language
 Line break behaviour
 Writing direction
 Conventions

 ...without hampering development

(True) Horror Story

We're in 2002, and a big Italian company wants
to localize their CAD program in Spanish.

If only it wasn't for...

(True) Horror Story

 Strings were initially hardcoded in Italian, English was
retrofitted at some point...

 ...with lots of if/else statements

 First try: add another else branch for each string in
code (...)

 Second try: tool to produce multiple codebases – one
for each language (...)

 AFAIK still unfinished two years later

All we need is a good workflow

 Developers produce i18n-ready code

 With no codebase pollution
 Translators translate strings

 Iteratively (code and strings can change!)
 No technical knowledge needed

 The framework does the rest

 78

Developers' step 1

 QObject.tr()
 Parse-time: marks strings
 Run-time: translates strings

 Not everything is a QObject...
 QCoreApplication.translate()
 QtCore.QT_TR_NOOP()

 79

Developers' step 2

 Use QString for all user visible text
 QString are Unicode strings transparent →

processing of strings (reg exp, split etc)

 80

Developers' step 3

 Use QString.arg() for dynamic text
 QString.arg() allows easy argument

reordering

def showProgress(self done, total, current_file):

 label.setText(self.tr("%1 of %2 files copied.\nCopying: %3")
 .arg(done)
 .arg(total)
 .arg(currentFile))

 81

Some glue

 Add a TRANSLATIONS entry to .pro
 Run pylupdate4 to extract a .ts file
 Send .ts file to translators
 Run lrelease to produce translated binary

files
 Set up a QTranslator
 QCoreApplication.installTranslator()

 82

Translators' (only) step

 Open .ts file with Linguist

 Fill the missing translations

 There is no step 3

 Developer: “...hey that's not fair!”

 83

Some case studies

 Nearing the 2.0 release:

 Parse again with pylupdate4
 Fill only the missing translations

 Wanting to add a language

 Add that language to TRANSLATIONS
 Run pylupdate4, translate the .ts file, lrelease
 This time it's a fairy tale!

 Update language on the fly

 installTranslator sends a changeEvent

 84

Gotchas

 ::tr assumes latin-1

 What about Designer files?

 85

PyInstaller
Distribute your Python programs

as a stand-alone executables

 86

Wrapping things up

 PyQt programs are often composed of:

 Python source
 PyQt libraries (.dll or .so)
 Data files

 How to distribute them?

 “Customer please apt-get python and pyqt”
 “What is apt-get?”

 87

Solution: PyInstaller

 88

PyInstaller crash course

 Get PyInstaller 1.5

 python Configure.py

 python Makespec.py <program>.py

 python Build.py <program>.spec

 ./dist/program/program

 89

Feature reel

 Free as in beer and freedom

 Multiplatform

 PyInstaller exclusive
 Built-in support for 3rd party libraries

 PyInstaller exclusive
 Compression (upx)

 90

Under the hood

 SPEC file: PyInstaller project (in Python)

 one-file / one-dir modes
 windowed / console
 debug
 icon, verison, etc...

 91

Dependencies

 Entry-point module in Analysis call

 Recursively analyze bytecode

 Explicit imports
 ctypes LoadLibrary

 Hidden imports

 Library-specific hooks

 92

“Wait, I'm still giving my
source away!”

 No source code

 Still, bytecode can be extracted
 Crypt support

 Custom code needed for this

GRAZIE !GRAZIE !

Contatti

Mail: info@develer.com

Phone: +39-055-3984627

Fax: +39 178 6003614

http://www.develer.com

Develer S.r.l.
Via Mugellese 1/A

50013 Campi Bisenzio
Firenze - Italia

mailto:info@develer.com
http://www.develer.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93

