
Bruno Renié — EuroPython 2013

Deployability
of Python

web applications

Deployability, n

 The extent to which
 something is deployable

Disclaimer

Most of this isn't python-specific
or even web-specific

Oriented at custom infrastructures
Some things still apply if you're on PaaS

How easy it is to install, configure
and operate your software?

Mostly about devs and ops
working together

12factor.net

installation
configuration

operation

Installation

Installing postgres

sudo apt-get install postgresql

Installing a python webapp

sudo apt-get install build-essential python-virtualenv
git clone https://deadbeef@github.com/corp/repo
cd repo
virtualenv env
env/bin/pip install -r requirements.txt
Figure out PYTHONPATH

Installing a python webapp

sudo apt-get install build-essential python-virtualenv
git clone https://deadbeef@github.com/corp/repo
cd repo
virtualenv env
env/bin/pip install -r requirements.txt
Figure out PYTHONPATH

Installing software is
a solved problem

Just use packaging
Yep, python packaging

Why python packaging?

Release process
Dependency management

Trivial rollbacks
Easy system packaging

Packaging in 30 seconds
setup.py
from distutils.core import setup
from setuptools import find_packages

with open('requirements.txt') as reqs:
 install_requires = reqs.read().split('\n')

setup(
 name='project',
 version=__import__('project').__version__,
 packages=find_packages(),
 include_package_data=True,
 zip_safe=False,
 install_requires=install_requires,
)

MANIFEST.in
include requirements.txt
recursive-include project *

Private package hosting
Local filesystem

Network-based, ala pypi.python.org

python setup.py sdist
pip install --download dist -r requirements.txt
rsync -avz -e ssh dist/ host.corp.com:/srv/pypi

pip install --no-index --find-links=/srv/pypi myproject

HTML directory index (apache / nginx / SimpleHTTPServer)

pip install --no-index --find-links=http://host myproject

System packages

fpm -s python -t deb setup.py

awk -F= '{printf "fpm -s python -t deb -v %s %s\n", $3, $1}' \
 requirements.txt | sh

https://github.com/rcrowley/freight

https://github.com/jordansissel/fpm

Sign, upload to your private repository

sudo apt-get install python-myproject
sudo apt-get install python-myproject=1.2.3

Pin your dependencies

Bad

Good

Django
Django>=1.4,<1.5

Django==1.4.5

http://nvie.com/posts/pin-your-packages/

This is for end products, not libraries

Configuration

Configuring postgres

$EDITOR /etc/postgresql/9.2/main/postgresql.conf

service postgresql restart

Does your app have a config file?

settings.py, production_settings.py are not config files

Configuration != code

Problems with configuration as code

Incompatible with packaging

Environment-specific code
Production-specific code will break production.

Code shouldn't be tied to environments
Code shouldn't be generated (salt / puppet / fabric)

Define your configuration
What changes between environments?

Database
Secret key
Host / port

Credentials to external services (AWS, Sentry…)

Read configuration from your code
.ini files

yaml
environment variables

…

Code changes
↓

release, deploy app

Infrastructure changes
↓

write config, reload app

Config as environment variables

Trivial to set with $PROCESS_MANAGER
Native to every programming language
De-facto standard (PaaS). Interoperability!

Shared hosting
Apache

Pros

Cons

Case study: Django settings

Before

After

DATABASES = {'default': {'HOST': 'localhost', …}}settings_local.py

DATABASES = {'default': {'HOST': 'prod', …}}settings_prod.py

DATABASES = {'default': {'HOST': 'staging', …}}settings_staging.py

DATABASES = {'default': dj_database_url.config()}settings.py

DATABASE_URL="postgres://host:5432/db"env

Config patterns

SECRET_KEY = os.environ['SECRET_KEY']
KeyError: 'SECRET_KEY'

PORT = int(os.environ.get('PORT', 8000))

Sane defaults when possible

Prevent the app from booting if something critical is missing

Use *_URL and parsers to reduce the number of variables
EMAIL_URL

DATABASE_URL

REDIS_URL

In development

django-dotenv
virtualenvwrapper postactivate hooks

custom manage.py
envdir

…

Operation

WSGI

Have a WSGI entry point

gunicorn myapp.wsgi -b 0.0.0.0:$PORT

Stateless processes

Persistence via external services

Database
Caching
Storage

…

Scale out with processes

More traffic? Spawn more processes.

Caveat: backend services
rarely scale horizontally

Maximize dev/prod parity

Same software

Same people

Same versions

If you use postgres in production, use postgres in development

PostgreSQL 9.1 and 9.2 do not perform equally

Developers should know about infrastructure

Continuous integration/deployment

CI != green badge on your github page

CD != always running master in production

Having shippable code

Deploying it whenever your want

CI

CD

tested
packaged
installable

Example workflow

Commit

Run tests

Package

Staging

Production

Example workflow

Staging

Production

Run tests

Commit

Package
manual or automated

Jenkins, SaltStack, IRC bots are your automation friends

use packaging to manage software

clearly define the
configuration contract

automate as much as possible
to minimize deployment friction

@brutasse
bruno@renie.fr

?

