
Creating federated
authorisation

for a Django survey application

Ed Crewe

Background
- the survey application

Federated authorisation
What do I mean by this?

1. Users login at a third party identity provider - IdP

2. They return to the application with user attributes set by
the IdP or a service access token.
Authorisation is determined by the 3rd party.

3. The service token has an established scope =
 authorisation level to the service via the application
OR
4. The attributes are used to provide different entitlements =
 authorisation levels to the service provider - SP

Federated authorisation

What am I hoping it can do for the users?

● Familiar login page and credentials
 - moves login support out of BOS.

● People have identities across more than one institution.
- display and manage them via a single home page.

● Devolves access control to their organisation's systems
- reduce overhead for institutional admins.

confused terminology
Sorry are we assuming federated
authentication too?

So taking a step back ... just because the authorisation is
federated that doesn't force the authentication to be as well. *

But for BOS we want a system that federates identity
providers who deliver authentication and authorisation
together as a package tied to that provider and its BOS
account.

So to get things clear let's cover the basics ...

* OAuth

Authentication Login to an application
 assigns a user an identity

Central network sign on is the start.
Allows one login to be used across many applications.

Most widely adopted is probably Kerberos
(1980s MIT open source protocol based on client-server, key
and ticket exchange)

SSO - (web) single sign on provides a web protocol that
wraps central sign on with a web login.

Widely used open source ones are OpenID and central
authentication service, CAS.

Authorisation Grants an identity access

1. OAuth app proxies a user's identity to a service provider

2. SAML2 a set of standards with many implementations from
simple SSO to full federation management.
○ Google SAML
○ SAML 2 Kerberos Web Browser SSO
○ Liberty alliance SSO (Lasso)
○ Active Directory ADFS2 (federates with WS-Security)
○ Shibboleth ... etc.

3. OpenId doesn't do authorisation yet, but has data attributes
... with possible authorisation features in future.

http://saml.xml.org/wiki/saml-open-source-implementations
https://developers.google.com/google-apps/sso/saml_reference_implementation
https://developers.google.com/google-apps/sso/saml_reference_implementation
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-kerberos-browser-sso.pdf
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-kerberos-browser-sso.pdf
http://technet.microsoft.com/en-us/library/dd727958(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/dd727958(v=ws.10).aspx
http://www.shibboleth.net/
http://www.shibboleth.net/
http://openid.net/tag/authorization/

AuthorisationAuthentication
(login)

Data attributes

CAS

OpenID
extensions

OAuth

SAML2 eg.
Shibboleth

vCard, FOAF,
atom.Person

OpenID WS-Security

comparison of web identity exchange protocols

Security Establish trust relationship
& encrypt communication

OpenId and CAS do not require key exchange between IdP
and SP, they also rely on the transport layer being encrypted.

OAuth does require key exchange for the trust relationship.

SAML2 requires key exchange for signing messages,
and uses XML encryption to secure messages on top of SSL.

WS-Security is similar, a Windows / IBM encryption standard
that uses secure SOAP messaging* for authorisation
federation

* OpenID, CAS, SAML2 & OAuth use either SOAP or REST

http://www.aleksey.com/xmlsec/xmldsig-verifier.html

SAML2 attributes sent
(or OAuth token set)

handle used to request
authorisation

authorisation process

user requests access

identity
provider

application -
service provider

login
redirected to idp with callback url

redirects to callback
with signed handle

● The UK has a Shibboleth federation of all Universities, so
we need to 'Shibbolize' BOS - both for login and
authorisation where possible

● Some of these users may still wish to use a local login

● There are also non-University users who should be able to
use their favourite OpenID provider

● Users may have multiple accounts / institutions.

... so what does django or its plugins give us

Back to BOS survey system users

1. Basic users, groups and class level permissions.
A user profile convention for extending data attributes.

2. Group is just id and name

3. User has a small set of fixed
data attributes along with password
and 'roles' all together in one table.

django.contrib.auth

There has been much debate over improvements and hence
little progress for a few years - so recently a BDFLs' decision
was made.

django.contrib.auth future

Move to a fully customisable User
model specified in settings with mixins
for data, permissions & authentication.

Hence, developers can pick 'n' mix
with their custom User model.

Work has commenced on this for the next django version (1.5)

https://code.djangoproject.com/wiki/ContribAuthImprovements#Recommendations
https://code.djangoproject.com/wiki/ContribAuthImprovements#Recommendations
https://groups.google.com/d/topic/django-developers/YwEZUIMuIkE/discussion
https://groups.google.com/d/topic/django-developers/YwEZUIMuIkE/discussion

1. django-guardian - tight integration with contrib.auth and
django admin for object level permissions, but not roles.

2. django-rules / rulez - flexible rules based object
authorisation so can be made to act like RBAC (rulez fork =
memory only, for speed)

3. django-permissions (part of LFS) - uses contrib.auth users
and groups then its own permission & role tables to deliver
full object RBAC

django authorisation eggs

1. django-social-auth - most popular and easy to install,
pure contrib.auth with OAuth and OpenID

2. Authentic2 - SAML2, CAS, OAuth, OpenID federation
django app - uses Lasso C-library for speed.

3. django-shibboleth - thin wrapper of Apache Shibboleth
- Shibboleth only (just for one SAML2 implementation)

4. pySAML2 - SAML2 only, requires repoze (ZODB) and
wsgi server.

* SAML2 ones do some authorisation too

django authentication* eggs

Authentic2
● Has a UI (django admin) config of SAML2, OpenID, OAuth,

CAS federation. With federation policies creation.
● Perfect for handling a large number of IdPs

django-permissions
● Acts as a roles based separation layer from permissions.
● Does so on an object level basis. Treats users and groups

as common principals in a standard roles based access
control manner.

● Permissions are separate from the default contrib.auth ones

What we chose to use

1. map one or more authentication identities to a single user

2. easily configure a federation for the survey service of
remote authentication and authorisation providers (IdPs)

3. apply policies for federated authorisation

4. use of role based access control (RBAC) for allocating
object permissions to groups

Requirements part 1

Authentic2 is designed to map one or more identities to a
user. A django user can be auto-created via a Shibboleth
login, or OpenID etc. and they can add other login identities to
themselves.

Authentic2 does requirement 1

contrib.auth.user persistent ids login identities

profile

Authentic2 easy IdP creation -> 2
Identity provider configuration - Authentic2

At /authsaml2/metadata
is your SP XML with SSL
encryption keys.
Exchange with customer's
equivalent IdP XML file.
Upload it via the django
admin to add the IdP.

qwertyuiop5sdfghjkl1234567890

Authentic2 easy policy config -> 3

Policies can be configured
separately and applied to
one or more IdPs

django-permissions object roles -> 4

each role is allocated
a set of permissions on
one or more of a subset
of relevant classes

groups have these roles
for selected objects

django-permissions
Roles are allocated as a set of permissions per object - but we
only need a single role definition per class.

Modify to make local role allocation group only, and automate it.

So user role allocation is remote only, via entitlements.

Authentic2
Shibboleth IdPs require the login ID to be transient.

Modify transient ID policies to check for persistent ID attributes.

If found switch to use them to create a persistent user mapping.

What was modified

5. derive (temporary) authorisation via IdP set attributes

6. mix local and remote authorisation allocation

7. query remote allocation for admin purposes

8. create an easy UI for users to manage their federated
accounts and for account admins to manage their users.

9. identity lifespan management

Requirements part 2

Roles act as a separation layer from permissions and are
either assigned locally to groups or remotely via entitlement
attributes to users.

Roles = superuser, administrator, author, viewer, respondent

Groups are auto-created and assigned roles via signals linked
to the creation of objects requiring permission allocation

Permissions checking is done via a standard view class or
function decorator. The decorator first tests remote then local
authorisation.

How do we tackle requirements 5 & 6

Local role allocation

survey - 123

authors

viewers

admins
(survey 123

admin group)

respondents

admin
rolesurvey

permissions

edit
lock
view

archive
etc.

account

folder

Remote survey allocation uses entitlement attributes to
allocate the same roles to objects for a user.

e.g. bos:cardiff:author:survey:how_are_you

the account name is checked against the institution's issuer
Shibboleth url.

Entitlements retrieved from the user session are temporary
allocations dependent on the SAML login.

Remote role allocation

bos:account:role:object:(id or codename):(ex/include:list)

Protect code with decorators that check request.user either for
django's class or function based views

Wrappers for calls to

which uses get_entitlements then get_roles to do the check

Also utility method for reverse lookup

Permission checking

@class_permissions('edit', 'lock')
@func_permissions(['edit', 'lock'], objects)

objects = objs_with_permission(user, klass, permissions)

check_permission(user, object, permission)

A look at the code ...

@class_permissions ('edit', 'lock')
class EditSurvey(UpdateView):
 """ A view for updating a survey """
 template_name = "edit/survey.html"
 model = Survey

 form_class = SurveyForm

 def get_context_data(self, **kwargs):
 context = super(EditSurvey, self).get_context_data(**kwargs)
 context['mode'] = 'edit_post'

...

So what happens when somebody goes to edit a survey.
Django url dispatch does its thing and routes the call to
the edit survey view with survey id etc. passed in the
kwargs, and request.user available ...

class permissions

class class_permissions (object):
 """ Tests the objects associated with class views - against permissions """
 perms = []
 request = None

 def __init__(self, *args):
 self.perms = args

 def __call__(self, View):
 """ Main decorator method """

 def _wrap(request=None, *args, **kwargs):
 """ First decorate with dispatch_set_request with request.user from
 login_required can then test permissions in get_context_data.

 """
 setter = getattr(View, 'dispatch', None)
 if setter:
 decorated = method_decorator(dispatch_set_request(self))(setter)
 setattr(View, setter.__name__,
 method_decorator(login_required)(decorated))
 getter = getattr(View, 'get_context_data' , None)
 if getter:
 setattr(View, getter.__name__,
 method_decorator(decklass_permissions(self))(getter))
 return View
 return _wrap()

decorator class core function decorator

def decklass_permissions (decklass):
 """ Function decorator for decorator class to check user for permissions.
 decklass is the decorated class, view_func is get_context_data
 and applies to different generic view classes
 """

 def decorator(view_func):
 @wraps(view_func, assigned=available_attrs(view_func))
 def _wrapped_view(**kwargs):
 context = view_func(**kwargs)
 obj_list = context.get('object_list', [])
 if not obj_list:
 obj = context.get('subobject',
 context.get('object', None))
 if obj:
 obj_list = [obj,]
 check_permissions(decklass.request, decklass.perms,
 decklass.request.user, obj_list)
 return context
 return _wrapped_view
 return decorator

check permissions function

def check_permissions (request, perms, user= None, obj_list=[]):
 """ Checks permissions against list of objects
 If used to decorate a function then these objects must be passed in
 the kwargs as object or object_list
 Also includes superuser test
 Retrieve role for object via saml2 entitlements first,
 then local permissions.
 """
 if not user:
 raise Denied("""No user has been passed in kwargs or context
 to test %s permissions""" % str(perms))
 if 'superuser' in perms and not user.is_superuser:
 raise Denied("You do not have superuser permissions")
 if not obj_list:
 raise Denied("""There is no object supplied in the request
 to test %s permissions""" % str(perms))

 ents = get_entitlements(request)
 for codename in perms:
 for obj in obj_list:
 if not has_class_permission(obj, user, codename, ents):
 raise Denied("""User '%s' doesn't have permission
 '%s' for object '%s' (%s)"""
 % (user, codename, obj, obj.__class__.__name__))

get entitlements

def get_entitlements(request):
 """ Grab the entitlements from the session
 Format received - bos:account:role:object_type:id/default_short_name/all
 returned - [account][all][object_type] = roles list
 or [account][object_type][id] = roles list
 where object_type = lowercase class name eg. survey
 """
 attributes = request.session.get('attributes', {})
 entitlements = attributes.get('eduPersonEntitlement' , '')
 issuer = attributes.get('__issuer', '')
 accounts = ()
 acct_ents = {}
 if issuer:
 accounts = issuer_accounts(issuer)
 for acct in accounts:
 acct_ents[acct] = { 'all':{}}
 if accounts and entitlements:
 entitlements = entitlements[0].lower().split(' ')
 entitlements = [e.replace(EPREFIX, '') for e \
 in entitlements if e.startswith(EPREFIX)]
 entitlements = [e.split(DIVIDER) for e in entitlements]
 # clean up and check data formats
 ...

check class permissions

def has_class_permission (obj, user, codename, ents):
 """ Check permissions via roles """
 def get_roles_ents(obj, user):
 """ Add roles a user has for an object together
 from both entitlements and local allocation (by groups)
 """
 if ents is None:
 roles = []
 else:
 roles = role_entitlements(ents, obj)
 roles.extend(get_roles(user, obj))
 return roles
 ct = get_content_type(obj)

 if check_parent_class_permissions(ct, codename, obj):
 return True

 return check_class_permissions(ct, codename, get_roles_ents(obj, user))

def check_class_permissions (ct, codename, roles):
 """ Checks whether the content class has the permission for the role """
 p = ObjectPermission.objects.filter(content_type=ct, content_id= 0,

 role__in=roles, permission__codename = codename)
 if p.count() > 0:
 return True
 return False

role entitlements

def role_entitlements (ents, obj):
 """ Translate the Shibboleth entitlements to roles for the object
 for temporary assignment to user during has_permission check
 First establish account for object then check entitlements
 """
 roles = []
 account = ''
 if ents:
 objtype = type(obj).__name__.lower()
 if hasattr(obj, 'account_id'):
 account = obj.account_id.default_short_name
 elif type(obj) == ACCOUNT_TYPE:
 account = obj.default_short_name
 if account:
 a_ents = ents.get(account, {})
 if a_ents:
 if a_ents['all'].has_key(objtype):
 roles = a_ents['all'][objtype]
 if a_ents.has_key(objtype):
 if a_ents[objtype].has_key(obj.id):
 roles.extend(a_ents[objtype][obj.id])
 if roles:
 return list(Role.objects.filter(name__in=roles))
 else:
 return []

7. query remote allocation for admin purposes
8. create an easy UI for users to manage their federated
 accounts and for account admins to manage their users
9. identity lifespan management

Shibboleth native install has a utitlity which allows direct
querying of a user's attributes by supplying a persistent ID to
the IdP (NativeSPAccountChecking)
Need to use this or build an equivalent based on Authentic2

This would allow both for the display of remote authorisation
allocations and lifespan tests.
The remote and local data can be combined in the admin UI

#TODO: requirements 7,8 & 9

https://wiki.shibboleth.net/confluence/display/SHIB2/NativeSPAccountChecking

Python and Django have a good range of tools and add ons
to deliver complex authentication and authorisation, greatly
reducing the work needed.
(thanks also to Authentic2 and django-permissions)

For a service of the scale of BOS a fully featured
authorisation federation tool is a core building block for
allowing smooth integration into client's systems.

Questions
or
suggestions?

Conclusion

personal - http://www.edcrewe.com
work - http://www.bris.ac.uk/ilrt/

mail - ed.crewe@bristol.ac.uk
twitter - @edcrewe

http://www.edcrewe.com
http://www.bris.ac.uk/ilrt/
mailto:ed.crewe@bristol.ac.uk

Abstract
schedule https://ep2012.europython.eu/p3/schedule/ep2012/ links to
https://ep2012.europython.eu/conference/talks/creating-federated-authorisation-for-a-django-survey-system

This talk is about the development of the user system for an online national national national survey application.

The goal of the talk would be to impart some knowledge of the current state of open authorisation standards and how the
python web application tools that are available for them may be applied in practise. The prerequisites are some background
in web development and perhaps authorisation systems - experience of Django is not necessary but may be useful.

The introduction will give background regarding the application, for context, e.g. 3 million survey responses in a Perl web
application being rewritten in Django with Cassandra and Postgres data storage. The need to add external access control
via Shibboleth (SAML) and OpenID.
This will be followed by a summary of the features and differences between the three main open standards for third party
access control, SAML, OAuth and OpenId.

Then I will move on to the issues involved:
● mapping one or more authentication identities to a single user
● how authorisation can be derived via attributes, to automate group membership
● the use of role based access control for allocating object permissions to groups
● identity lifespan management
● mixing local and remote authorisation allocation, etc.

Next will be an explanation of what django.contrib.auth has, its likely future (a rewrite is currently under discussion), and a
review of the various authentication and authorisation add on eggs available for Django that could help deliver elements of
these requirements.

This section will end with what we chose to use and the issues that this involved.
Finally some python code! So a look at some of the more generically useful implementation code, e.g. development of
standard object permission decorators for Django class views.

Concluding with where we are now and lessons learned.

https://ep2012.europython.eu/p3/schedule/ep2012/
https://ep2012.europython.eu/conference/talks/creating-federated-authorisation-for-a-django-survey-system
https://ep2012.europython.eu/conference/talks/creating-federated-authorisation-for-a-django-survey-system

