
DATE: May 13, 2013Florence, Italy

Clone Detection
in Python

Valerio Maggio (valerio.maggio@unina.it)

Introduction

Duplicated Code

Number one in the stink
parade is duplicated code.
If you see the same code
structure in more than one
place, you can be sure that
your program will be better if
you find a way to unify them.

2

Introduction

The Python Way

3

Introduction

The Python Way

3

Introduction

NLTK (tree.py)

4

Introduction

NLTK (tree.py)

4

Introduction

NLTK (tree.py)

4

Introduction

NLTK (tree.py)

4

Introduction

NLTK (tree.py)

4

Introduction

NLTK (tree.py)

4

Introduction

Duplicated Code
‣ Exists: 5% to 30% of code is similar

• In extreme cases, even up to 50%

- This is the case of Payroll, a COBOL system

5

Introduction

Duplicated Code
‣ Exists: 5% to 30% of code is similar

• In extreme cases, even up to 50%

- This is the case of Payroll, a COBOL system

‣ Is often created during development

5

Introduction

Duplicated Code
‣ Exists: 5% to 30% of code is similar

• In extreme cases, even up to 50%

- This is the case of Payroll, a COBOL system

‣ Is often created during development

• due to time pressure for an upcoming deadline

5

Introduction

Duplicated Code
‣ Exists: 5% to 30% of code is similar

• In extreme cases, even up to 50%

- This is the case of Payroll, a COBOL system

‣ Is often created during development

• due to time pressure for an upcoming deadline

• to overcome limitations of the programming language

5

Introduction

Duplicated Code
‣ Exists: 5% to 30% of code is similar

• In extreme cases, even up to 50%

- This is the case of Payroll, a COBOL system

‣ Is often created during development

• due to time pressure for an upcoming deadline

• to overcome limitations of the programming language

‣ Three Public Enemies:

5

Introduction

Duplicated Code
‣ Exists: 5% to 30% of code is similar

• In extreme cases, even up to 50%

- This is the case of Payroll, a COBOL system

‣ Is often created during development

• due to time pressure for an upcoming deadline

• to overcome limitations of the programming language

‣ Three Public Enemies:

• Copy, Paste and Modify

5

DATE: May 13, 2013Part I: Clone Detection

Clone Detection
in Python

DATE: May 13, 2013Part I: Clone Detection

Clone Detection
in Python

Part I: Clone Detection

Code Clones

‣ There can be different definitions of similarity,
based on:

• Program Text (text, syntax)
• Semantics

7

(Def.) “Software Clones are segments of code that are similar
according to some definition of similarity” (I.D. Baxter, 1998)

Part I: Clone Detection

Code Clones

‣ There can be different definitions of similarity,
based on:

• Program Text (text, syntax)
• Semantics

‣ Four Different Types of Clones

7

(Def.) “Software Clones are segments of code that are similar
according to some definition of similarity” (I.D. Baxter, 1998)

Part I: Clone Detection

The original one

8

Original Fragment
def do_something_cool_in_Python(filepath, marker='---end---'):
	 lines = list()
	 with open(filepath) as report:
	 	 for l in report:
	 	 	 if l.endswith(marker):
	 	 	 	 lines.append(l) # Stores only lines that ends with "marker"
	 return lines #Return the list of different lines

Part I: Clone Detection

Type 1: Exact Copy
‣ Identical code segments except for differences in layout, whitespace,

and comments

9

Part I: Clone Detection

Type 1: Exact Copy
‣ Identical code segments except for differences in layout, whitespace,

and comments

9

Original Fragment
def do_something_cool_in_Python(filepath, marker='---end---'):
	 lines = list()
	 with open(filepath) as report:
	 	 for l in report:
	 	 	 if l.endswith(marker):
	 	 	 	 lines.append(l) # Stores only lines that ends with "marker"
	 return lines #Return the list of different lines

def do_something_cool_in_Python (filepath, marker='---end---'):
	 lines = list() # This list is initially empty

	 with open(filepath) as report:
	 	 for l in report: # It goes through the lines of the file
	 	 	 if l.endswith(marker):
	 	 	 	 lines.append(l)
	 return lines

Part I: Clone Detection

Type 2: Parameter Substituted Clones
‣ Structurally identical segments except for differences in identifiers,

literals, layout, whitespace, and comments

10

Part I: Clone Detection

Type 2: Parameter Substituted Clones
‣ Structurally identical segments except for differences in identifiers,

literals, layout, whitespace, and comments

10

Type 2 Clone
def do_something_cool_in_Python(path, end='---end---'):
	 targets = list()
	 with open(path) as data_file:
	 	 for t in data_file:
	 	 	 if l.endswith(end):
	 	 	 	 targets.append(t) # Stores only lines that ends with "marker"
	 #Return the list of different lines
	 return targets

Original Fragment
def do_something_cool_in_Python(filepath, marker='---end---'):
	 lines = list()
	 with open(filepath) as report:
	 	 for l in report:
	 	 	 if l.endswith(marker):
	 	 	 	 lines.append(l) # Stores only lines that ends with "marker"
	 return lines #Return the list of different lines

Part I: Clone Detection

Type 3: Structure Substituted Clones
‣ Similar segments with further modifications such as changed, added (or deleted)

statements, in additions to variations in identifiers, literals, layout and comments

11

Part I: Clone Detection

Type 3: Structure Substituted Clones
‣ Similar segments with further modifications such as changed, added (or deleted)

statements, in additions to variations in identifiers, literals, layout and comments

11

import os
def do_something_with(path, marker='---end---'):
	 # Check if the input path corresponds to a file
	 if not os.path.isfile(path):
	 	 return None
	
	 bad_ones = list()
	 good_ones = list()
	 with open(path) as report:
	 	 for line in report:
	 	 	 line = line.strip()
	 	 	 if line.endswith(marker):
	 	 	 	 good_ones.append(line)
	 	 	 else:
	 	 	 	 bad_ones.append(line)
	 #Return the lists of different lines
	 return good_ones, bad_ones

Part I: Clone Detection

Type 3: Structure Substituted Clones
‣ Similar segments with further modifications such as changed, added (or deleted)

statements, in additions to variations in identifiers, literals, layout and comments

11

import os
def do_something_with(path, marker='---end---'):
	 # Check if the input path corresponds to a file
	 if not os.path.isfile(path):
	 	 return None
	
	 bad_ones = list()
	 good_ones = list()
	 with open(path) as report:
	 	 for line in report:
	 	 	 line = line.strip()
	 	 	 if line.endswith(marker):
	 	 	 	 good_ones.append(line)
	 	 	 else:
	 	 	 	 bad_ones.append(line)
	 #Return the lists of different lines
	 return good_ones, bad_ones

Part I: Clone Detection

Type 3: Structure Substituted Clones
‣ Similar segments with further modifications such as changed, added (or deleted)

statements, in additions to variations in identifiers, literals, layout and comments

11

import os
def do_something_with(path, marker='---end---'):
	 # Check if the input path corresponds to a file
	 if not os.path.isfile(path):
	 	 return None
	
	 bad_ones = list()
	 good_ones = list()
	 with open(path) as report:
	 	 for line in report:
	 	 	 line = line.strip()
	 	 	 if line.endswith(marker):
	 	 	 	 good_ones.append(line)
	 	 	 else:
	 	 	 	 bad_ones.append(line)
	 #Return the lists of different lines
	 return good_ones, bad_ones

Part I: Clone Detection

Type 3: Structure Substituted Clones
‣ Similar segments with further modifications such as changed, added (or deleted)

statements, in additions to variations in identifiers, literals, layout and comments

11

import os
def do_something_with(path, marker='---end---'):
	 # Check if the input path corresponds to a file
	 if not os.path.isfile(path):
	 	 return None
	
	 bad_ones = list()
	 good_ones = list()
	 with open(path) as report:
	 	 for line in report:
	 	 	 line = line.strip()
	 	 	 if line.endswith(marker):
	 	 	 	 good_ones.append(line)
	 	 	 else:
	 	 	 	 bad_ones.append(line)
	 #Return the lists of different lines
	 return good_ones, bad_ones

Part I: Clone Detection

Type 4: “Semantic” Clones
‣ Semantically equivalent segments that perform the same

computation but are implemented by different syntactic variants

12

Part I: Clone Detection

Type 4: “Semantic” Clones
‣ Semantically equivalent segments that perform the same

computation but are implemented by different syntactic variants

12

Original Fragment
def do_something_cool_in_Python(filepath, marker='---end---'):
	 lines = list()
	 with open(filepath) as report:
	 	 for l in report:
	 	 	 if l.endswith(marker):
	 	 	 	 lines.append(l) # Stores only lines that ends with "marker"
	 return lines #Return the list of different lines

def do_always_the_same_stuff(filepath, marker='---end---'):
	 report = open(filepath)
	 file_lines = report.readlines()
	 report.close()
	 #Filters only the lines ending with marker
	 return filter(lambda l: len(l) and l.endswith(marker), file_lines)

Part I: Clone Detection

What are the consequences?
‣ Do clones increase the maintenance effort?
‣ Hypothesis:

• Cloned code increases code size

• A fix to a clone must be applied to all similar fragments

• Bugs are duplicated together with their clones

‣ However: it is not always possible to remove clones

• Removal of Clones is harder if variations exist.

13

Part I: Clone Detection 14

Duplix

Scorpio

PMD

CCFinder

Dup CPD
Duplix

Shinobi
Clone Detective

Gemini

iClones

KClone

ConQAT

Deckard
Clone Digger

JCCD
CloneDr SimScan

CLICS

NiCAD

Simian

Duploc

Dude

SDD

Clone Detection Tools

Part I: Clone Detection 14

Duplix

Scorpio

PMD

CCFinder

Dup CPD
Duplix

Shinobi
Clone Detective

Gemini

iClones

KClone

ConQAT

Deckard
Clone Digger

JCCD
CloneDr SimScan

CLICS

NiCAD

Simian

Duploc

Dude

SDD

‣ Text Based Tools:
• Lines are compared to other

lines

Clone Detection Tools

Part I: Clone Detection 14

Duplix

Scorpio

PMD

CCFinder

Dup CPD
Duplix

Shinobi
Clone Detective

Gemini

iClones

KClone

ConQAT

Deckard
Clone Digger

JCCD
CloneDr SimScan

CLICS

NiCAD

Simian

Duploc

Dude

SDD

‣ Token Based Tools:
• Token sequences are compared to

sequences

Clone Detection Tools

Part I: Clone Detection 14

Duplix

Scorpio

PMD

CCFinder

Dup CPD
Duplix

Shinobi
Clone Detective

Gemini

iClones

KClone

ConQAT

Deckard
Clone Digger

JCCD
CloneDr SimScan

CLICS

NiCAD

Simian

Duploc

Dude

SDD

‣Syntax Based Tools:
• Syntax subtrees are

compared to each other

Clone Detection Tools

Part I: Clone Detection 14

Duplix

Scorpio

PMD

CCFinder

Dup CPD
Duplix

Shinobi
Clone Detective

Gemini

iClones

KClone

ConQAT

Deckard
Clone Digger

JCCD
CloneDr SimScan

CLICS

NiCAD

Simian

Duploc

Dude

SDD

‣Graph Based Tools:
• (sub) graphs are compared to each

other

Clone Detection Tools

Part I: Clone Detection

Clone Detection Techniques

15

‣ String/Token based Techiniques:

• Pros: Run very fast

• Cons: Too many false clones
‣ Syntax based (AST) Techniques:

• Pros: Well suited to detect structural similarities

• Cons: Not Properly suited to detect Type 3 Clones

‣ Graph based Techniques:

• Pros: The only one able to deal with Type 4 Clones

• Cons: Performance Issues

Part I: Clone Detection

The idea: Use Machine Learning, Luke

‣ Use Machine Learning Techniques to compute similarity of fragments by
exploiting specific features of the code.

‣ Combine different sources of Information

• Structural Information: ASTs, PDGs

• Lexical Information: Program Text

16

Part I: Clone Detection

Kernel Methods for Structured Data

‣ Well-grounded on solid and awful
Math

‣ Based on the idea that objects
can be described in terms of
their constituent Parts

‣ Can be easily tailored to specific
domains

• Tree Kernels
• Graph Kernels
•

17

Part I: Clone Detection

Defining a Kernel for Structured Data

18

Part I: Clone Detection

Defining a Kernel for Structured Data

The definition of a new Kernel for a Structured Object requires
the definition of:

18

Part I: Clone Detection

Defining a Kernel for Structured Data

The definition of a new Kernel for a Structured Object requires
the definition of:

‣ Set of features to annotate each part of the object

18

Part I: Clone Detection

Defining a Kernel for Structured Data

The definition of a new Kernel for a Structured Object requires
the definition of:

‣ Set of features to annotate each part of the object

‣ A Kernel function to measure the similarity on the smallest part
of the object

18

Part I: Clone Detection

Defining a Kernel for Structured Data

The definition of a new Kernel for a Structured Object requires
the definition of:

‣ Set of features to annotate each part of the object

‣ A Kernel function to measure the similarity on the smallest part
of the object

• e.g., Nodes for AST and Graphs

18

Part I: Clone Detection

Defining a Kernel for Structured Data

The definition of a new Kernel for a Structured Object requires
the definition of:

‣ Set of features to annotate each part of the object

‣ A Kernel function to measure the similarity on the smallest part
of the object

• e.g., Nodes for AST and Graphs

‣ A Kernel function to apply the computation on the different
(sub)parts of the structured object

18

Part I: Clone Detection

Kernel Methods for Clones:
Tree Kernels Example on AST

‣ Features: We annotate each node by a set of 4
features

• Instruction Class

- i.e., LOOP, CONDITIONAL_STATEMENT, CALL

• Instruction

- i.e., FOR, IF, WHILE, RETURN

• Context

- i.e. Instruction Class of the closer statement node

• Lexemes

- Lexical information gathered (recursively) from leaves

- i.e., Lexical Information

19

FOR

Part I: Clone Detection

Kernel Methods for Clones:
Tree Kernels Example on AST

‣ Kernel Function:

• Aims at identify the maximum
isomorphic Tree/Subtree

20

K(T1, T2) =
X

n2T1

X

n02T2

�(n, n0) ·Ksubt(n, n
0)

block

print

p0.0s

=

1.0

=

p

s

f

block

print

y1.0x

=

x

=

y

x

f

Ksubt(n, n
0) = �sim(n, n0) + (1� �)

X

(n1,n2)2Ch(n,n0)

k(n1, n2)

DATE: May 13, 2013Part II: Clones and Python

Clone Detection
in Python

DATE: May 13, 2013Part II: Clones and Python

Clone Detection
in Python

Part II: In Python

The Overall Process Sketch
22

1. Pre Processing

Part II: In Python

The Overall Process Sketch
22

block

print

p0.0s

=

1.0

=

p

s

f

block

print

y1.0x

=

x

=

y

x

f

1. Pre Processing 2. Extraction

Part II: In Python

The Overall Process Sketch
22

block

print

p0.0s

=

1.0

=

p

s

f

block

print

y1.0x

=

x

=

y

x

f

block

print

p0.0s

=

1.0

=

p

s

f

block

print

y1.0x

=

x

=

y

x

f

1. Pre Processing 2. Extraction

3. Detection

Part II: In Python

The Overall Process Sketch
22

block

print

p0.0s

=

1.0

=

p

s

f

block

print

y1.0x

=

x

=

y

x

f

block

print

p0.0s

=

1.0

=

p

s

f

block

print

y1.0x

=

x

=

y

x

f

1. Pre Processing 2. Extraction

3. Detection 4. Aggregation

Part II: In Python

Detection Process
23

Part II: In Python

Empirical Evaluation
‣ Comparison with another (pure) AST-based: Clone Digger

• It has been the first Clone detector for and in Python :-)

• Presented at EuroPython 2006
‣ Comparison on a system with randomly seeded clones

24

‣ Results refer only to
Type 3 Clones

‣ On Type 1 and Type 2
we got the same
results

Part II: In Python

Precision/Recall Plot
25

0

0.25

0.50

0.75

1.00

0.6 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98

Precision, Recall and F-Measure

Precision Recall F1

Precision: How accurate are the obtained results?
 (Altern.) How many errors do they contain?

Recall: How complete are the obtained results?
 (Altern.) How many clones have been retrieved w.r.t. Total Clones?

Part II: In Python

Is Python less clone prone?
26

Roy et. al., IWSC, 2010

Part II: In Python

Clones in CPython 2.5.1

27

DATE: May 13, 2013Florence, Italy

Thank you!

