
FAST, DOCUMENTED AND RELIABLE
JSON WEBSERVICES WITH PYTHON

Alessandro Molina
@__amol__

amol@turbogears.org

Who am I

● CTO @ Axant.it mostly Python company

(with some iOS and Android)

● TurboGears2 development team member

● MongoDB fan and Ming ODM contributor

● Skeptic developer always looking for a

better solution

What's going to come

● Rapid prototyping of web services

● Tools to quickly document json services

● Using Ming and Mongo In Memory for

mongodb based fully tested webservices

● Bunch of tools to deploy TurboGears

based services

Why TurboGears

● Can start small, easy scale to a full

featured environment when required

● RestController makes easy to write REST

● ObjectDispatch makes a lot of sense for

non-rest services

● TurboGears validation copes great with API

Start Small

● TurboGears minimal mode provides a

convenient way to write simple services

from wsgiref.simple_server import make_server
from tg import expose, TGController, AppConfig

class RootController(TGController):
 @expose('json:') # Render output as JSON
 def echo(self, what): # ?what=X is passed as a parameter
 return dict(text='Hello %s' % what) # Will be encoded to JSON due to @expose

Define a minimal mode application that dispatches to RootController
config = AppConfig(minimal=True, root_controller=RootController())

print("Serving on port 8080...")
httpd = make_server('', 8080, config.make_wsgi_app())
httpd.serve_forever()

Let's try it!

● Start python

○ python myapp.py

● Point browser

○ http://localhost:8080/echo?what=user

● Get your asnwer back

○ {"text": "Hello user"}

As easy as it can be

Where to store? Try MongoDB

● Many APIs can be mapped to a single

findAndModify call when proper

Document design is in place

● Subdocuments make a lot of sense

● PyMongo works great with gevent

● GridFS for uploaded files

It scales! Really easy to shard

MongoDB on TurboGears

● Available out of the box

○ $ gearbox quickstart --ming myproj

○ http://turbogears.readthedocs.org/en/tg2.3.0

b2/turbogears/mongodb.html

● Ming design similar to SQLAlchemy

○ http://merciless.sourceforge.net/orm.html

○ Unit of Work or go barenone bypassing ODM

● Production on big sites like sourceforge

Testing MongoDB

● Ming provides MongoInMemory

○ much like sqlite://:memory:

● TurboGears quickstart provides a test suite

that uses MIM for every new project with

fixtures to setup models and controllers

● Implements 90% of mongodb, including

javascript execution with spidermonkey

Debugging MongoDB

● TurboGears debugbar has builtin support

for MongoDB

○ Executed queries logging and results

○ Queries timing

○ Syntax prettifier and highlight for Map-Reduce and

$where javascript code

○ Queries tracking on logs for performance

reporting of webservices

DebugBar in action

Try tgext.crud

● Sadly most people use it only to prototype

html crud controllers

● Works great to generate REST apis too

● Builtin validation and error reporting

● Can be customized like any RestController

○ Just name your methods like the verbs and

implement them

No, for real!

● Supports both SQLA and MongoDB

● Can perform substring filtering on get_all

● Provides a lot of configurable features

○ Input as urlencoded/multipart params or JSON

body

○ Supports conditional If-Unmodified-Since PUT

○ Can perform automatic relationships serialization

○ Pagination tuning

Great, now how do I use it?

● If you are like me, as soon as you switch

writing the client you totally forgot the api

methods signature.

● Even if you know, other people won't

● Be your team hero: Write documentation!

D11nman, sphinx superpowers

sphinxcontrib.jsoncall

● Extends sphinxcontrib.httpdomain

● Makes easy to document JSON based urls

● Provides a form to play with api by

submitting values and reading responses

● prettifies and highlights responses as

JSON

Quickly write references

Using tgjsonautodoc

● Generates documentation for methods

with @expose('json')

● Uses docstring to document the API

● Autogenerates a playground form using

the method definition

● If @validate is used, documents validators

Docstrings everywhere!
 @expose('json')
 @validate({'player':OptionalPlayerValidator(),
 'count':Int(not_empty=True)},
 error_handler=fail_with(403))
 def leaderboard(self, player, count):
 """
 Provides global or relative ranks for the currently active tournament.
 If a player is provided, instead of returning the first ``count`` best
 players it will return ``count/2`` people before and after
 the player. The player itself is also returned

 :query player: The ``facebook id`` of the user.
 :query count: The number of ranks to return (maximum 20, must be an even number)

 .. jsoncall:: /api/leaderboard

 {"player": "",
 "count": 3}

 {
 "error": null,
 "code": 0,
 "result": {
 "ranks": [
 ...
]
 }
 }
 """

Setup Sphinx

● sphinx-quickstart docs

○ BUILD_DIR = ../myapp/public/doc

● Enable sphinxcontrib.tgjsonautodoc to

automatically generate doc

○ extensions = ['sphinxcontrib.httpdomain',

'sphinxcontrib.jsoncall', 'sphinxcontrib.

tgjsonautodoc']

○ tgjsonautodoc_app = '../development.ini'

Let sphinx do the hard work

● Put reference for your APIs wherever you

prefer and skip any unwanted url

Available API

.. tgjsonautodoc::
 :skip-urls: /admin,/data

You wrote doc!

Typical team member when he reads your doc!

Deploy

● You don't want to use gearbox serve

● Circus with Chausette is a super-easy and

flexible solution for deployments

○ http://turbogears.readthedocs.org/en/tg2.3.0

b2/cookbook/deploy/circus.html

● Gearbox can automate most of the

configuration steps for circus deployment

Going on Circus and Gevent

● Minimal circus.ini configuration

○ [circus]
include = configs/*.ini

● Enable application virtualenv

● pip install gearbox-tools

● Autogenerate configuration

○ gearbox deploy-circus -b gevent > ../myproj.ini

● circusd circus.ini

○ 2013-01-01 01:01:01 [26589] [INFO] myproj started

Circus Config

[env:myproj]
PATH=/home/amol/venv/tg23py26/bin:$PATH
VIRTUAL_ENV=/home/amol/venv/tg23py26

[watcher:myproj]
working_dir = /tmp/myproj
cmd = chaussette --backend gevent --fd $(circus.sockets.myproj) paste:production.ini
use_sockets = True
warmup_delay = 0
numprocesses = 1

stderr_stream.class = FileStream
stderr_stream.filename = myproj.log
stderr_stream.refresh_time = 0.3

stdout_stream.class = FileStream
stdout_stream.filename = myproj.log
stdout_stream.refresh_time = 0.3

[socket:myproj]
host = localhost
port = 8080

Orchestrating the whole stack

● Apart serving your own application with

chaussette, circus can also start your

dependencies like redis, celery and so on

when starting the app.

● Make sure to have a look at

documentation

○ http://circus.readthedocs.org/en/latest/

Questions?

