FAST, DOCUMENTED AND RELIABLE
JSON WEBSERVICES WITH PYTHON

Alessandro Molina
@__amol__
amol@turbogears.org

Who am |

o CTO @ Axant.it mostly Python company
(with some iOS and Android)

e TurboGears2 development team member
e MongoDB fan and Ming ODM contributor

e Skeptic developer always looking for a

better solution

What's going to come

Rapid prototyping of web services

Tools to quickly document json services

Using Ming and

Mongo In Memory for

mongodb based

fully tested webservices

Bunch of tools to deploy TurboGears

based services

Why TurboGears

Can start small, easy scale to a full

featured environment when required
RestController makes easy to write REST

ObjectDispatch makes a lot of sense for

non-rest services

TurboGears validation copes great with API

Start Small

e TurboGears minimal mode provides a

convenient way to write simple services

from wsgiref.simple_server import make_server
from tg import expose, TGController, AppConfig

class RootController(TGController):
@expose('json:") # Render output as JSON
def echo(self, what): # ?what=X is passed as a parameter
return dict(text="Hello %s' % what) # Will be encoded to JSON due to @expose

Define a minimal mode application that dispatches to RootController
config = AppConfig(minimal=True, root_controller=RootController())

print("Serving on port 8080...")
httpd = make_server(', 8080, config.make_wsgi_app())
httpd.serve_forever()

Let's try it!

e Start python
o python myapp.py

e Point browser

o http:.//localhost:8080/echo?what=user

e Get your asnwer back

O "text™ "Hello user’}

As easy as it can be

EVERYTHING
SH(IUI.D BEAS
\SIMPLEAS

PﬂSSlBl.E N\

BUTNOT
\ _SlMPI.ER \\

Where to store? Try MongoDB

Many APls can be mapped to a single

findAndMoo

Document ©

ity call when proper

esign is in place

Subdocuments make a lot of sense

PyMongo works great with gevent

GridFS for uploaded files

It scales! Really easy to shard

MongoDB on TurboGears

e Available out of the box
o $ gearbox quickstart --ming myproj
o http://turbogears.readthedocs.org/en/tg2.3.0
b2/turbogears/mongodb.html
e Ming design similar to SQLAlchemy

o http://merciless.sourceforge.net/orm.html

o Unit of Work or go barenone bypassing ODM

e Production on big sites like sourceforge

Testing MongoDB

e Ming provides MongolnMemory

o much like sqglite://:memory:

e TurboGears quickstart provides a test suite
that uses MIM for every new project with

fixtures to setup models and controllers

e Implements 90% of mongodb, including

Javascript execution with spidermonkey

Debugging MongoDB

e TurboGears debugbar has builtin support
for MongoDB

o Executed queries logging and results

o Queries timing

o Syntax prettifier and highlight for Map-Reduce and
$where javascript code

o Queries tracking on logs for performance

reporting of webservices

DebugBar in action

P1Gmail - Inbox ~ alessandro.) Welcome to TurboGears 2.

€« > C‘ fi ® localhost:8080 w2 & d f? A
G Timings | Request | Ming | Controllers | Logging

Queries Performed

Actions Time (ms) Command Params

RESULTS 48.5840 Group.find ({H

[{"$where”: function() {

var date = new Date();
var curDate = null;
do {

RESULTS 310.7841 Group.find curDate = new Date();
}
while(curbDate-date < 30);
return true;

123
RESULTS 5.0032 Group.find.limit [({}, 1111

RESULTS 5.0089 Group.find [{"group name": "managers”}]

Try tgext.crud

e Sadly most people use it only to prototype

html crud controllers
e \Xorks great to generate REST apis too
e Builtin validation and error reporting

e Can be customized like any RestController

o Just name your methods like the verbs and

iImplement them

No, for real!

e Supports both SQLA and MongoDB

e Can perform substring filtering on get_all

e Provides a lot of configurable features

O

Input as urlencoded/multipart params or JSON

body
Supports conditional If-Unmodified-Since PUT

Can perform automatic relationships serialization

Pagination tuning

Great, now how do | use it?

e If you are like me, as soon as you switch
writing the client you totally forgot the apl

methods signature.

e Even if you know, other people won't

e Be your team hero: Write documentation!

D11nman, sphinx superpowers

sphinxcontrib.jsoncall

e Extends sphinxcontrib.httpdomain
e Makes easy to document JSON based urls

e Provides a form to play with api by

submitting values and reading responses

e prettifies and highlights responses as
JSON

Quickly write references

GET /api/public_present
Returns the informations aboute the present specified by the id argument.

Query Parameters:
¢ id — The ID of the present you want to look at.

Example request:

id | 505c6a9d93681621aa0000fe

{
"status": 0,
"wvalue": {
"info": {
" longitude": "-122.406417",
"Shop": "Travel Agency",
" latitude": "37.785834"
},
"title": "Vacation on Beach",
"mhatn s "Iani A /SNSAARRQAQIARTA?2TaaNNNTANT

Using tgjsonautodoc

Generates documentation for methods

with @expose(json’)
Uses docstring to document the API

Autogenerates a playground form using

the method definition

If @validate Is used, documents validators

Docstrings everywhere!

@expose('json')

@validate({'player':OptionalPlayerValidator(),
‘count":Int(not_empty=True)},
error_handler=fail_with(403))

def leaderboard(self, player, count):

min

Provides global or relative ranks for the currently active tournament.
If a player is provided, instead of returning the first * "count’ " best
players it will return * “count/2 " people before and after

the player. The player itself is also returned

:query player: The ' “facebook id' " of the user.
:query count: The number of ranks to return (maximum 20, must be an even number)

.. Jjsoncall:: /api/leaderboard
{Hp/ayer": IIII,
"count": 3}

{

"error": null,

"code": 0,

"result": {
"ranks": [

1
b
by

mn

Setup Sphinx

e sphinx-quickstart docs
o BUILD_DIR = ../myapp/public/doc

e Enable sphinxcontrib.tgjsonautodoc to

automatically generate doc

o extensions = ['sphinxcontrib.httpdomain,
sphinxcontrib jsoncall, 'sphinxcontrib.
tgjsonautodoc]

o tgjsonautodoc_app = ../development.ini

Let sphinx do the hard work

e Put reference for your APIs wherever you

prefer and skip any unwanted url

Available API

.. tgjsonautodoc::
:skip-urls: /admin,/data

You wrote doc!

e

Typical team member when he reads your doc!

Deploy
e You don't want to use gearbox serve

e Circus with Chausette is a super-easy and

flexible solution for deployments

o http://turbogears.readthedocs.org/en/tg2.3.0
b2/cookbook/deploy/circus.html

e Gearbox can automate most of the

configuration steps for circus deployment

Going on Circus and Gevent

e Minimal circus.ini configuration

[circus]
include = configs/".ini

e Enable application virtualenv
e pip install gearbox-tools

e Autogenerate configuration
o gearbox deploy-circus -b gevent > ../myproj.ini
e Circusd circus.ini

o 2013-01-01 01:01.01 [26589] [INFO| myproj started

Circus Config

[env:myproj]
PATH=/home/amol/venv/tg23py26/bin:$PATH
VIRTUAL_ENV=/home/amol/venv/tg23py26

[watcher:myproj]

working_dir = /tmp/myproj

cmd = chaussette --backend gevent --fd $(circus.sockets.myproj) paste:production.ini
use_sockets = True

warmup_delay = 0

numprocesses = 1

stderr_stream.class = FileStream
stderr_stream.filename = myproj.log
stderr_stream.refresh_time = 0.3

stdout_stream.class = FileStream
stdout_stream.filename = myproj.log
stdout_stream.refresh_time = 0.3

[socket:myproj]
host = localhost
port = 8080

Orchestrating the whole stack

e Apart serving your own application with
chaussette, circus can also start your

dependencies like redis, celery and so on

when starting the app.

e Make sure to have a look at

documentation

o http://circus.readthedocs.org/en/latest/

Questions?

