
Best Practices for
Python in the Cloud

Presented by:
Gisle Aas, Senior Developer, ActiveState

Best Practices for Python in the Cloud:
Lessons Learned @ActiveState

Gisle Aas
! gisle@activestate.com
! @gisle
! github.com/gisle

whoami?

Agenda

! About ActiveState
! What’s a Cloud Anyway?
! Python in the Cloud
! The ActiveState Experience
! Best Practices
! Building for PaaS (Stackato)

About ActiveState

! Founded 1997
! 2 million developers, 97% of Fortune 1000 rely on

ActiveState
! Development, management, distribution solutions

for dynamic languages
! Core languages: Python, Perl, Tcl
! Other languages: PHP, Ruby, Javascript
! Related products: Komodo IDE, Stackato

ActiveState Solutions help developers

Just What Is A Cloud?

Essential Characteristics:
! On-demand self-service
! Broad network access
! Resource pooling
! Rapid elasticity
! Measured Service

Service models: IaaS, PaaS, SaaS

Deployment models:
! Private cloud
! Community cloud
! Public cloud
! Hybrid cloud

The Cloud

http://xkcd.com/908/

Python in the Cloud

Who is using Python in the Cloud?

even michaelmoore.com uses python!

What ActiveState
 Learned along the way…

Our Cloud Experience

Our Best Practices Guidelines

1.  Simple
2.  Isolated
3.  Disposable
4.  Relocatable
5.  Portable
6.  Open

Keep it Simple

Keep Your App Simple

! Keep your code and concepts simple
! Use simplest database that can possibly work
! LAMP Stacks work

ActivePython AMI LAMP Stack
 for Python Web Applications

! Ubuntu 10.04LTS 64-bit
! Nginx
! For static content and route web-traffic to multiple worker instances

! Apache (2.2.16), running mod_wsgi (3.3.7)
! ActivePython, with PyPM packaging manager
! virtualenv (1.5.1) & virtualenvwrapper
! Django (1.2.3)
! SQLite3, MySQL 5.1, memcached

! State of the art … 1 year ago!
! The art changes quickly in the cloud

Make Deploying Apps Simple

! Developers just want to Develop
! Developers want to leverage familiar tools
! VCS, IDE, etc.

! Resolve Dependencies Automatically
! Developers do not want to be sysadmins
! No firewall management
! No database installs
! No network management

Manage your Packages!

! Use package managers such as
! yum and aptitude for tools such as Apache
! PyPM and Pip for Python package dependencies

! Use pre-built package repositories
! PyPM pulls from a single central repository of pre-built

binaries that have been tested to work on a number of
platforms.

! pip pulls resources from multiple sources, potentially
delaying an install if one of the dependencies is
temporarily inaccessible.

Keep it Isolated

Create in Isolated Environments

! Compartmentalize and isolate your build environment
! Dominant tools are virtualenv and virtualenvwrapper
! http://pypi.python.org/pypi/virtualenv
! http://www.doughellmann.com/projects/virtualenvwrapper/.
! Easily setup and switch between multiple, isolated python

environments
! Developers like the isolation
! Fearlessly install new tools for experimentation without

corrupting other environments
! Allows incompatible version dependencies

Enable Security by Isolation

http://theinvisiblethings.blogspot.com/2008/09/three-approaches-to-computer-security.html

Natural borders, like OS system boundaries are
the strongest security borders you can create for
application deployment.

Security by Isolation!

! The only truly “trusted” solution:

A Choice of Solutions

! FreeBSD Jail
! Solaris Containers
! IBM AIX Partitions
! Linux-VServer
! Parallels Virtuozzo
! OpenVZ
! LXC
! Full OS virtualization

Make it Disposable

Disposable Instances

! Treat instances as temporary, disposable things that can
easily be rebuilt from scratch
! Manage state changes from a build script
! Avoid logging-in via ssh to run installs or to edit configurations

! Tools like Fabric are designed to handle multi-step,
multi-machine deployment
! A fabfile becomes executable documentation of how to build your

instance, run tests, and bring the system live
! Simplifies software updates or altering configurations
! Useful for adjusting instance sizes or replication for load-

balancing

Disposable Data

! What parts of your data is disposable
! How to persist data
! Locally managed data
! Off-system data stores

! Mirroring
! For high-availability
! For safety

! Backups … need I say more?

Make it Relocatable

Relocatable Components

! Communicate through sockets
! Use distinct hostnames, no IP addresses
! Make cloning easy that allows retargeting

hostnames
! Separate primary services (e.g. db and web app)
! Allows cloning the right services for scaling
! Backups can happen only for key components
! Fail-over and recovery become easier to implement
! Nginx front-end should be able to run separately from

the underlying web server(s)

Make it Portable

Portability

! Between IaaS providers
! Amazon, Linode, RackSpace, …

! Between PaaS systems
! Minimize Dependencies
! Rely on the web app framework
! It provides many abstractions already

Object Relational Mappers

! Abstracts working with databases
! Change in response to load or storage needs
! Decouple the database from the application
! An adapter between different styles of database access

! Design for scalability from the outset

Keep it Open

6 Simple Rules to Live By

! Simple
! Isolated
! Disposable
! Relocatable
! Portable
! Open Source

Working with a PaaS Platform

The Stackato Experience

Stackato in 6 Simple Rules

! Simple
! 3 step application deployment
! Automatic dependency resolution

! Isolated
! Each instance get their own environment
! Security by isolation

! Disposable
! Reusable VMs
! Code separated from instances

Stackato in 6 Simple Rules

! Relocatable
! Concept of "Services"

! Portable
! Options of VMs or AMI
! Both with the VM and code by design

! Open Source
! Based on Cloud Foundry
! LAMPy stack

Stackato Client and VM

Stackato Architecture

Stackato from a Developer Perspective

! 3 Step App Deployment
! Install the 'stackato' client with pypm
! Set the 'target' URL
! Run 'stackato push’

! Client bundles the application and pushes it to the server
! Config files in the application directory tell the cloud

controller what additional software is required
! The application environment is assembled, and the

application is deployed to one or more worker nodes

Any Questions?

! Questions?

! Next Steps:
! Find out more about Stackato
! activestate.com/cloud

! Request Information:
! Business-Solutions@activestate.com
! 1-866-510-2914

