
Contents
Topics (1 of 6) 7

Topics (2 of 6) 8

Topics (3 of 6) 9

Topics (4 of 6) 10

Topics (5 of 6) 11

Topics (6 of 6) 12

Intro - Nuitka (1 of 3) 13

Intro - Nuitka (2 of 3) 14

Nuitka - Intro (3 of 3) 15

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 1 of 54

System Requirements 16

Demo Time (1 of 3) 17

Demo Time (2 of 3) 18

Demo Time (3 of 3) 19

Generated Code (1 of 2) 20

Generated Code (2 of 2) 21

Nuitka Design - Outside View 22

Nuitka Design - Inside View 23

Goal: Pure Python - only faster (1 of 2) 24

Goal: Pure Python - only faster (2 of 2) 25

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 2 of 54

News: Target Language Change 26

Function calls arguments (1 of 2) 27

Function calls arguments (2 of 2) 28

Nuitka the Project - git (1 of 2) 29

Nuitka the Project - git (2 of 2) 30

Nuitka the Project - Plan (1 of 4) 31

Nuitka the Project - Plan (2 of 4) 32

Nuitka the Project - Plan (3 of 4) 33

Nuitka the Project - Plan (4 of 4) 34

Nuitka - Interfacing to C/C++ (1 of 2) 35

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 3 of 54

Nuitka - Interfacing to C/C++ (2 of 2) 36

Nuitka the Project - Activities 37

Language Conversions to make things simpler 38

Conversion: The class statement 39

Conversion: Boolean expressions and and or 41

Conversion: Many others (1 of 2) 42

Conversion: Many others (2 of 2) 43

Nuitka the Project - But what if builtins change 44

Nuitka the Project - But anything could change 45

Nuitka the Project - Join 46

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 4 of 54

Optimization 1 of 6 47

Optimization 2 of 6 48

Optimization 3 of 6 49

Optimization 4 of 6 50

Optimization 5 of 6 51

Optimization 6 of 6 52

Discussion 53

This Presentation 54

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 5 of 54

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 6 of 54

Topics (1 of 6)

• Intro

• Who am I? / What is Nuitka?

• System Requirements

• Demo

• Compiling a simple program

• Compiling a simple module

• Compiling full blown program (Mercurial)

• Follow the design in the source

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 7 of 54

Topics (2 of 6)

• Nuitka goals Quick run through

• Faster than before, no new language

• No language or compatibility limits

• Same error messages

• All extension modules work

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 8 of 54

Topics (3 of 6)

• Status Update

• Project Plan

• All Python versions supported

• All major platforms supported

• Threading is there

• Join me

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 9 of 54

Topics (4 of 6)

• Reformulations

• Python in simpler Python

• New lessons learned

• But - what if

• Changes to builtins module

• Values escape in Python

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 10 of 54

Topics (5 of 6)

• Optimization (so far)

• Peephole visitor

• Dead code elimination

• Frame stack avoidance

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 11 of 54

Topics (6 of 6)

• Optimization (coming)

• Trace collection

• Merges in the trace

• Dead assignment elimination

• Escape analysis

• Shape analysis

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 12 of 54

Intro - Nuitka (1 of 3)

• Created explicitly to achieve a fully compatible Python compiler that does not
invent a new language, and opens up whole new usages.

• Thinking out of box. Python is not only for scripting, do the other things with
Python too.

• No time pressure, need not be fast immediately.

Can do things the correct /TM/ way, no stop gap is needed.

• Named after my wife Anna

Anna - Annuitka - Nuitka

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 13 of 54

Intro - Nuitka (2 of 3)

• Major milestones achieved, basically working as an accelerator.

• Nuitka is known to work under:

• Linux, NetBSD, FreeBSD

• Windows 32 and 64 bits

• MacOS X

• Crosscompile from Linux to Windows

• Android and iOS need work, but should be possible

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 14 of 54

Nuitka - Intro (3 of 3)
Starting Europython last year, Nuitka was released under Apache License 2.0.

• Very liberal license

• Allows Nuitka to be used with practically all software

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 15 of 54

http://www.apache.org/licenses/LICENSE-2.0

System Requirements

• Nuitka needs:

• Python 2.6 or 2.7, 3.2, or 3.3 (new)

• C++ compiler:

• g++ 4.5 or higher

• clang 3.0, 3.2, or 3.3

• Visual Studio 2008, Visual Studio 2010

• MinGW for Win32

• Your Python code

• That is it

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 16 of 54

Demo Time (1 of 3)
Simple program

def somefunc(a):
 b = 7
 return a + b

def somegenerator(x):
 yield 1
 yield x

if __name__ == "__main__":
 print somefunc(8)
 print list(somegenerator(42))

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 17 of 54

Demo Time (2 of 3)
Simple module, same as before.

• Generated code doesn't change much, but __name__ does, and the conditional
code guarded by a test on it is optimized away.

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 18 of 54

Demo Time (3 of 3)
Complex program.

• Compile without recursion gives warnings about "mercurial" module

• Compile with embedded module --recurse-to=mercurial.

• Compile with plugins found as well.

Using --recurse-directory=/usr/share/pyshared/hgext.

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 19 of 54

Generated Code (1 of 2)
print "& (3)", a & b & d

PyObjectTempKeeper0 op1;
PyObjectTempKeeper1 op3;
PRINT_ITEM_TO(NULL, _python_str_digest_2c9fbb02f98767c025af8ac4a1461a18); // #
PRINT_ITEM_TO(NULL,
 PyObjectTemporary(
 TO_STR(
 PyObjectTemporary(
 (op3.assign(
 (op1.assign(_mvar___main___a.asObject0()),
 BINARY_OPERATION(
 PyNumber_And,
 op1.asObject0(),
 _mvar___main___b.asObject0()
)
)
),
 BINARY_OPERATION(
 PyNumber_And,
 op3.asObject0(),
 _mvar___main___d.asObject0()
)
)
).asObject()
)
).asObject()
);
PRINT_NEW_LINE_TO(NULL);

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 20 of 54

Generated Code (2 of 2)
An important design choice for generated code, was to avoid having to manage
temporary PyObject * within code. Instead, Python expressions, should translated
to C++ expressions. Otherwise generated code would have to handle release.

To aid it, we have PyObjectTemporary, PyObjectTempKeeper and their
destructors.

The & is not usable as a C++ identifier, therefore a hash code is used. A string
"value" would become _python_str_plain_value.

The BINARY_OPERATION is a wrapper for the CPython C-API, that throws a C++
Exception, should an error be indicated (NULL return).

Within generated C++ code return codes are not checked, a C++ exception would be
raised. That allows C++ compiler to manage the release of references in
PyObjectTemporary or PyObjectLocalVariable, PyObjectSharedVariable.

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 21 of 54

Nuitka Design - Outside View

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 22 of 54

Nuitka Design - Inside View

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 23 of 54

Goal: Pure Python - only faster (1 of 2)

• New language means loosing all the tools

1. IDE auto completion (emacs python-mode, Eclipse, etc.)

2. IDE syntax highlighting

3. PyLint checks

4. Dependency graphs

5. No simple fallback to CPython, Jython, PyPy, IronPython, etc.
That hurts, I don't want to/can't live without these.

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 24 of 54

Goal: Pure Python - only faster (2 of 2)

• Proposed Solution without new language

A module hints to contain checks implemented in Python, assertions, etc.

x = hints.mustbeint(x)

The compiler recognizes these hints and x in C++ may become int x or
PyObjectOrInt.

Ideally, these hints will be recognized by inlining and understanding mustbeint
consequences, that follow as well from this:

x = int(x)

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 25 of 54

News: Target Language Change

• C++11 -> C++03

• Evaluation order not there with variadic templates.

• Raw strings not as perfect anyway.

• Allows to support Android, Microsoft Visual Studio, etc.

• More portable code, was more work, but now we support much more platforms
out of the box.

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 26 of 54

Function calls arguments (1 of 2)
Function Calls:

In Python the order of evaluation of parameters is guaranteed. In C++ it is not in any
way:

Python calls a, b, c, then f, in that exact order
f(a(), b(), c())

// C++ has undefined evaluation order, may call a, b, c in any order
PyObject *_tmp1 = a();
PyObject *_tmp2 = b();
PyObject *_tmp3 = c();

f(tmp1, tmp2, tmp3);

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 27 of 54

Function calls arguments (2 of 2)
Therefore we have complex "ordered evaluation", supplying arguments to C++
functions with "sequence operator" usages.

Improvement since 2012: The ordered evaluation is now a general solution, does no
longer rely on using compiler specifics.

The MSVC compiler could not be tricked at all, it takes liberty to arrange parameters for
calls, in the optimal way, no matter what. So this had to be solved to ensure long term
viability.

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 28 of 54

Nuitka the Project - git (1 of 2)

• Master (current release 0.4.4)

The stable version should be perfect at all times and is fully supported. As soon as
bugs are known and have fixes, hotfix releases containing only these fixes might
be done.

• Develop

Future possible release, that is supposed to be fully correct, but it isn't supported
as much, and at times may have problems or inconsistencies that will be removed
before release.

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 29 of 54

Nuitka the Project - git (2 of 2)

• Factory

Frequently re-based, staging here commits for develop, until they feel robust, my
goal is to be perfectly suitable for git bisect. Orignally the develop branch was
re-based to achieve that, but that's no longer done.

• Feature branches

Not used anymore really. Nuitka is relatively feature complete, and can advance
multiple things, in logical steps concurrently on a relatively stable basis.

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 30 of 54

Nuitka the Project - Plan (1 of 4)

1. Feature Parity with CPython

Understand the whole language and be fully compatible. Compatibility is
amazingly high. Python 2.6, 2.7, 3.2, and 3.3 all perfect.

All kinds of inspections now like Nuitka compiled code. Functions have proper
flags, locals/globals identity or not, run time patched inspect module to be more
tolerant.

Patched and upstream integrated patches (wxpython, PyQt, PySide) which hard
coded non-compiled functions/methods.

New: Threading is somewhat supported.

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 31 of 54

Nuitka the Project - Plan (2 of 4)

2. Generate efficient C++ code

The pystone benchmark gives a nice speedup by 258%.

2013: We are now making faster function calls than before.

2013: More built-ins covered.

Open: Apply knowledge of variable usage patterns more often. Already doing it for
parameter variables with or without del on them. Variables that cannot be used
unassigned should be clearer too.

Open: Exceptions are not yet fast enough. These are slow in C++, and should be
avoided more often. Here, there we have more work to do.

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 32 of 54

Nuitka the Project - Plan (3 of 4)

3. "Constant Propagation"

Identify as much values and constraints at compile time. And on that basis,
generate even more efficient code. Largely achieved.

4. "Type Inference"

Detect and special case str, int, list, etc. in the program.

Only starting to exist.

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 33 of 54

Nuitka the Project - Plan (4 of 4)

5. Interfacing with C code.

Nuitka should become able to recognize and understand ctypes and cffi
bindings to the point, where it can avoid using ctypes, and make direct calls and
accesses, based on thos declarations.

Does not exist yet.

6. hints Module

Should check under CPython and raise errors, just like under Nuitka. Ideally, the
code simply allows Nuitka to detect, what they do, and make conclusions based
on that, which may be too ambitious though.

Does not yet exist.

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 34 of 54

Nuitka - Interfacing to C/C++ (1 of 2)
The inclusion of headers files and syntax is a taboo.

Vision for Nuitka, it should be possible, to generate direct calls and accesses from
declarations of ctypes module.

That would be the base of portable bindings, that just work everywhere, and that these
- using Nuitka - would be possible to become extremely fast.

strchr = libc.strchr
strchr.restype = c_char_p
strchr.argtypes = [c_char_p, c_char]

strchr("abcdef", "d")

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 35 of 54

Nuitka - Interfacing to C/C++ (2 of 2)
typedef char * (*strchr_t)(char *, char);
strchr_t strchr = LOAD_FUNC("libc", "strchr");

strchr("abcdef", "d");

• Native speed calls, with no overhead.

• The use of ctypes interface in Python replaces them fully.

• Tools may translate headers into ctypes declarations.

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 36 of 54

Nuitka the Project - Activities
Current:

• SSA based optimization (removal of "value friends")

• Proper handling of SSA for exception handlers, finally blocks

• Some actual type inference

• CPython3.3 tests also a as git repository with documented commits per diff

Maybe this year:

• Making direct calls to known or suspected functions, removing argument parsing
inside programs.

• More performance data on http://nuitka.net/pages/performance.html

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 37 of 54

http://nuitka.net/pages/performance.html

Language Conversions to make things simpler

• There are cases, where Python language can in fact be expressed in a simpler or
more general way, and where we choose to do that at either tree building or
optimization time.

• These simplifications are very important for optimization. New: Important new
ones.

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 38 of 54

Conversion: The class statement
Classes are functions with "early variable closure". Class bodies build a dictionary, then
the meta-class is determined and asked to build a class type object, which is then
assigned to an object.

in module "SomeModule"
...

class SomeClass(SomeBase, AnotherBase)
 """ This is the class documentation. """

 some_member = 3

def _makeSomeClass:
 # The module name becomes a normal local variable too.

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 39 of 54

 __module__ = "SomeModule"

 # The doc string becomes a normal local variable.
 __doc__ = """ This is the class documentation. """

 some_member = 3

 return locals()

 # force locals to be a writable dictionary, will be optimized away, but
 # that property will stick. This is only to express, that locals(), where
 # used will be writable to.
 exec ""

SomeClass = make_class("SomeClass", (SomeBase, AnotherBase), _makeSomeClass())

• Python3 is more complex, but same idea.

• For Nuitka there are only functions.

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 40 of 54

Conversion: Boolean expressions and and or
The short circuit operators or and and tend to be only less general that the if/else
expressions and are therefore re-formulated as such:

expr1() or expr2()

_tmp if (_tmp = expr1()) else expr2()

expr1() and expr2()

expr2() if (_tmp = expr1()) else _tmp

• Only switching sides.

• We only have conditional expressions left as "short-circuit".

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 41 of 54

Conversion: Many others (1 of 2)

• Details of this can be found in Developer Manual.

• For/ while loops -> loops with breaks, explicit iterator handling

• With statements -> trying a block of code, with special exception handling

• Decorators -> simple function calls with temporary variables

• Inplace / complex / unpacking assignments -> assignments with temporary
variables.

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 42 of 54

Conversion: Many others (2 of 2)

• Details of this can be found in Developer Manual.

• No "elif" -> nested if statements

• no "else:" in "try:" blocks -> conditional statements with temporary variables

• Contractions -> functions too

• Generator expressions -> generator functions

• Complex calls ** or * -> simple calls that merge with other parameters in helper
functions

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 43 of 54

Nuitka the Project - But what if builtins change

• Changes to __builtin__ module

• Changes to builtins module

• Values escape in Python

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 44 of 54

Nuitka the Project - But anything could change

• Almost anything may change behind Nuitka's back when calling unknown code

• But guards can check or trap these changes

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 45 of 54

Nuitka the Project - Join
You are welcome.

Am accepting patches as ...

• whatever diff -ru outputs

• git formatted "patch queues"

• git pull requests

The integration work is mine. Based on git branches master or develop, or released
source archives, does no matter, I will integrate your work and attribute it to you.

There is the mailing list nuitka-dev on which most of the announcements will be done
too. Also there are RSS Feeds on http://nuitka.net, where you will be kept up to date
about major stuff.

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 46 of 54

http://nuitka.net/pages/mailinglist.html
http://nuitka.net

Optimization 1 of 6

• Peephole visitor

• Visit every module and function used

• In each scope, visit each statements computeStatement.

Example: StatementAssignmentAttribute (AssignNodes.py)

• In each statement, visit each expression

Example: ExpressionAttributeLookup (AttributeNodes.py)

• In the order of execution call sub-expressions

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 47 of 54

Optimization 2 of 6

• Dead code elimination

• Statements can be abortive (return, raise, continue, break)

• Subsequent statements are unreachable

• Dead variables needs SSA

• Coming. Variables only written to, are dead.

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 48 of 54

Optimization 3 of 6

• Frame stack avoidance

• Frames in Python are mandatory for functions and modules.

• Nuitka generates a frame for bodies of them, but then it shrinks their size to
cover only things that can raise.

• Example:

def f():
 a = 42 # cannot fail
 return a # cannot fail

• For methods, that assign to self attributes, they may not raise as well,
depends on base class though.

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 49 of 54

Optimization 4 of 6

• Trace collection

• Setup variables at entry of functions or modules as:

• "Uninit" (will raise when used)

• "Unknown" (no idea what it is)

• "Init" (known to be init, but unknown what it is)

• During visit of all assignments and references to variables

• Add references when used

• Start a new "version" when an assignment takes place

• "Merge" at code paths joining

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 50 of 54

Optimization 5 of 6

• Using traces, we can make dead assignment elimination

• Teaches code generation about access that cannot raise, more efficient code.

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 51 of 54

Optimization 6 of 6

• Escape analysis

• When people say "but Python is too dynamic, everything may change at any
time".

• Need to trace the escape of values.

• Guards to detect escape, ideally when it happens.

Writes to global variables e.g. should trigger value generation flags. Very fast
to detect if a global is changed.

• Unescaped values, esp. lists, might see better

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 52 of 54

Discussion

• Will be here for all of PyCON-EU and Sprint, I have put up a Nuitka sprint, you are
free to come and bring your software, and we can try Nuitka on it together. I
welcome questions and ideas in person. Questions also welcome via Email to
kay.hayen@gmail.com or on the mailing list.

• My hope is:

1. More contributions (there are some, but not enough).

2. To fund my travel, donations

3. A critical review of Nuitka design and source code, would be great.

4. Ideas from C++ people, how Nuitka could produce better code.

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 53 of 54

mailto:kay.hayen@gmail.com
http://nuitka.net/pages/mailinglist.html
http://nuitka.net/pages/donations.html

This Presentation

• Created with rst2pdf

• Download the PDF http://nuitka.net/pr/Nuitka-Presentation-PyCON-EU-2013.pdf

• Diagrams were created with OOo Draw

• Icons taken from visualpharm.com (License requires link).

• For presentation on PyCon EU

Nuitka - The statically optimizing Python Compiler

© Kay Hayen, 2013 | Page 54 of 54

http://code.google.com/p/rst2pdf/
http://nuitka.net/pr/Nuitka-Presentation-PyCON-EU-2013.pdf
http://incubator.apache.org/openofficeorg/
http://visualpharm.com
http://europython.org

	Topics (1 of 6)
	Topics (2 of 6)
	Topics (3 of 6)
	Topics (4 of 6)
	Topics (5 of 6)
	Topics (6 of 6)
	Intro - Nuitka (1 of 3)
	Intro - Nuitka (2 of 3)
	Nuitka - Intro (3 of 3)
	System Requirements
	Demo Time (1 of 3)
	Demo Time (2 of 3)
	Demo Time (3 of 3)
	Generated Code (1 of 2)
	Generated Code (2 of 2)
	Nuitka Design - Outside View
	Nuitka Design - Inside View
	Goal: Pure Python - only faster (1 of 2)
	Goal: Pure Python - only faster (2 of 2)
	News: Target Language Change
	Function calls arguments (1 of 2)
	Function calls arguments (2 of 2)
	Nuitka the Project - git (1 of 2)
	Nuitka the Project - git (2 of 2)
	Nuitka the Project - Plan (1 of 4)
	Nuitka the Project - Plan (2 of 4)
	Nuitka the Project - Plan (3 of 4)
	Nuitka the Project - Plan (4 of 4)
	Nuitka - Interfacing to C/C++ (1 of 2)
	Nuitka - Interfacing to C/C++ (2 of 2)
	Nuitka the Project - Activities
	Language Conversions to make things simpler
	Conversion: The class statement
	Conversion: Boolean expressions and and or
	Conversion: Many others (1 of 2)
	Conversion: Many others (2 of 2)
	Nuitka the Project - But what if builtins change
	Nuitka the Project - But anything could change
	Nuitka the Project - Join
	Optimization 1 of 6
	Optimization 2 of 6
	Optimization 3 of 6
	Optimization 4 of 6
	Optimization 5 of 6
	Optimization 6 of 6
	Discussion
	This Presentation

