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About Me

Thomas Perl

http://thp.io/

m@thp.io
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http://github.com/thp
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Hardware

● PS Move Motion Controller
● USB (pairing, charging) and Bluetooth
● Accelerometer, Gyroscope, Magnetometer
● Glowing RGB ball, 8 digital buttons, 1 analog trigger

● PS Eye Camera
● USB 2.0, 4 microphones (not used here)
● 640x480 @ 60 FPS, 320x240 @ 120 FPS

c
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6DoF (six degrees of freedom)

● 3-axis position
● tracked with OpenCV

via camera, sphere
● 3-axis rotation

● tracked with AHRS algorithm
via inertial sensors Image source: Wikipedia
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Tracking Algorithm (1/2)
“Blinking 
Calibration”

1: LEDs on

2: LEDs of

3: Diference image

4: Thresholded dif

Use 4 as mask for 1, 
average color of 
biggest blob = color 
of sphere in camera
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Tracking Algorithm (2/2)
Sphere Size 
Calculation

Find the two points A, 
B in the blob with the 
maximum distance

Line from A to B

Center of sphere: 
Center of Line

Diameter of sphere:
Length of Line
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Implementation
● C library (PS Move API) + Bindings (Python, ...)
● Cross-platform availability



  8

Hands-On
How to use the API in Python
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Let's write an AR game in Python

● “Whack a cube”
● Grid of 3x3 cubes floating in space
● Cubes light up randomly, hit to score
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Whack a cube: Design (1/2)

● Highlight happens randomly
● Maximum number of

highlighted cubes
● Timeout (before highlight

disappears) also random
● Minimum time between

two consecutive hits
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Whack a cube: Design (2/2)

● Collision detection
using distance

● Time split into
“ticks” (20 ms)

● Rendering:
Camera image + colored cube
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Whack a cube: Implementation

● Focus on API usage and AR, not visuals
● Button: “Whackable cube”

● Highlight state, position, hit handling
● Highlighter: Picks button for highlight

● Also takes care of maximum highlights
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3D Rendering

● Model-View Matrix: Controller (6DoF)
● Projection Matrix: Camera Projection

● Placing objects on the controller sphere
● Object at origin (x=0, y=0, z=0)
● Apply Model-View Matrix

Image source: songho.ca
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OpenGL Shader Pipeline (1/2)

Image source: developer..apple.com
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OpenGL Shader Pipeline (2/2)

Image source: developer..apple.com
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Hands-On
Whack a cube
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Performance

● Vision Tracker Frame Rate (tracking 1 controller)
● ~ 50 - 68 FPS

● End-to-End System Latency
● Initially: 60 ms (+/- 3 ms)
● While tracking is in progress: ~ 15 ms

● Maximum Sensor Update Rate:
● ~ 87 updates / second (hardware limit)
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More Info
http://thp.io/2013/europython/ 

Project

http://thp.io/2010/psmove/

http://code.google.com/p/moveonpc/

Thesis

http://thp.io/2012/thesis/ 

Google Summer of Code 2012

http://thp.io/2013/europython/
http://thp.io/2010/psmove/
http://code.google.com/p/moveonpc/
http://thp.io/2012/thesis/
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