
 1

Affordable Off-The-Shelf
Augmented Reality in Python

Thomas Perl
http://thp.io/2013/europython/

2013-07-04 – EuroPython 2013, Florence, Italy

 2

About Me

Thomas Perl

http://thp.io/

m@thp.io

@thp4

http://github.com/thp

http://thp.io/
mailto:m@thp.io

 3

Hardware

● PS Move Motion Controller
● USB (pairing, charging) and Bluetooth
● Accelerometer, Gyroscope, Magnetometer
● Glowing RGB ball, 8 digital buttons, 1 analog trigger

● PS Eye Camera
● USB 2.0, 4 microphones (not used here)
● 640x480 @ 60 FPS, 320x240 @ 120 FPS

c

 4

6DoF (six degrees of freedom)

● 3-axis position
● tracked with OpenCV

via camera, sphere
● 3-axis rotation

● tracked with AHRS algorithm
via inertial sensors Image source: Wikipedia

 5

Tracking Algorithm (1/2)
“Blinking
Calibration”

1: LEDs on

2: LEDs of

3: Diference image

4: Thresholded dif

Use 4 as mask for 1,
average color of
biggest blob = color
of sphere in camera

 6

Tracking Algorithm (2/2)
Sphere Size
Calculation

Find the two points A,
B in the blob with the
maximum distance

Line from A to B

Center of sphere:
Center of Line

Diameter of sphere:
Length of Line

 7

Implementation
● C library (PS Move API) + Bindings (Python, ...)
● Cross-platform availability

 8

Hands-On
How to use the API in Python

 9

Let's write an AR game in Python

● “Whack a cube”
● Grid of 3x3 cubes floating in space
● Cubes light up randomly, hit to score

 10

Whack a cube: Design (1/2)

● Highlight happens randomly
● Maximum number of

highlighted cubes
● Timeout (before highlight

disappears) also random
● Minimum time between

two consecutive hits

 11

Whack a cube: Design (2/2)

● Collision detection
using distance

● Time split into
“ticks” (20 ms)

● Rendering:
Camera image + colored cube

 12

Whack a cube: Implementation

● Focus on API usage and AR, not visuals
● Button: “Whackable cube”

● Highlight state, position, hit handling
● Highlighter: Picks button for highlight

● Also takes care of maximum highlights

 13

3D Rendering

● Model-View Matrix: Controller (6DoF)
● Projection Matrix: Camera Projection

● Placing objects on the controller sphere
● Object at origin (x=0, y=0, z=0)
● Apply Model-View Matrix

Image source: songho.ca

 14

OpenGL Shader Pipeline (1/2)

Image source: developer..apple.com

 15

OpenGL Shader Pipeline (2/2)

Image source: developer..apple.com

 16

Hands-On
Whack a cube

 17

Performance

● Vision Tracker Frame Rate (tracking 1 controller)
● ~ 50 - 68 FPS

● End-to-End System Latency
● Initially: 60 ms (+/- 3 ms)
● While tracking is in progress: ~ 15 ms

● Maximum Sensor Update Rate:
● ~ 87 updates / second (hardware limit)

 18

More Info
http://thp.io/2013/europython/

Project

http://thp.io/2010/psmove/

http://code.google.com/p/moveonpc/

Thesis

http://thp.io/2012/thesis/

Google Summer of Code 2012

http://thp.io/2013/europython/
http://thp.io/2010/psmove/
http://code.google.com/p/moveonpc/
http://thp.io/2012/thesis/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

