
science + computing ag
IT-Services for Complex Computing Environments
Tübingen | Munich | Berlin | Düsseldorf

Advanced Pickling with
Stackless Python and sPickle

 Anselm Kruis | EuroPython 2011

 © 2011 science + computing ag

Page 2
Anselm Kruis | EuroPython 2011 | June 24th, 2011

Who and Why

 Who
Name: Anselm Kruis
Profession: Senior Architect at science + computing
Location: Munich

 Why
▪ Python is fun, let's do some cool stuff
▪ How to migrate a running program from one computer to another?
▪ Is Pickling the way to go?
▪ Created sPickle

 © 2011 science + computing ag

Page 3
Anselm Kruis | EuroPython 2011 | June 24th, 2011

What is Pickling

 Wikipedia:
In the computer programming language Python, pickle is the

standard mechanism for object serialization; pickling is the
common term among Python programmers for serialization
(unpickling for deserialization).

'\x01\x02\x30....'
pickle

unpickle

 © 2011 science + computing ag

Page 4
Anselm Kruis | EuroPython 2011 | June 24th, 2011

How does pickling work?

▪ The Pickler writes a program in the Pickle language, a tiny but
powerful programming language.

▪ The Unpickler is an interpreter for the Pickle language.
It creates a single complex object from primitive types and collections, imported

objects, external objects and from the execution of already unpickled functions
or methods. See module pickletools source for documentation.

Unpickling is insecure. Do not unpickle untrusted data.

▪ To support new object types it is usually sufficient to improve the
Pickler only.

▪ Both Stackless Python and the sPickle module extend the Pickler
from the Python library.

 © 2011 science + computing ag

Page 5
Anselm Kruis | EuroPython 2011 | June 24th, 2011

 Answer: Read the Python documentation (11.1.4):
▪ By value: data (strings, numbers, ... and collections of picklable objects)
▪ By reference: code (function, classes, …) if they are importable
▪ Objects, which implement the pickle protocol.

That is quite limited!

What can be pickled by plain CPython?

Python Pickling Support

Code
State
(stack,

resources)
Data

by value
by reference
not at all

 © 2011 science + computing ag

Page 6
Anselm Kruis | EuroPython 2011 | June 24th, 2011

Stackless Python

▪ Stackless Python is a variant of CPython
▪ Python frame stack is independent from the C-Stack used by the CPU
▪ Tasklets (a kind of coroutine) are used to manage python stacks.

▪ You can create many tasklets, each with its own frame-stack
▪ You can switch control between tasklets

▪ Therefore the Stackless Python developers were able to implement
pickling and unpickling for tasklets (and some other types)

Python Pickling Support

CodeData
State
(stack,

resources)

 © 2011 science + computing ag

Page 7
Anselm Kruis | EuroPython 2011 | June 24th, 2011

▪ It tries to fill the gap in the “Code” area.
▪ It provides a Pickler class, that is intended to replace the

pickle.Pickler class. And a few utility classes.

▪ For unpickling we use the standard implementation from cPickle
or pickle.

Package sPickle

Python Pickling Support

CodeData
State
(stack,

resources)

 © 2011 science + computing ag

Page 8
Anselm Kruis | EuroPython 2011 | June 24th, 2011

Package sPickle

▪ Name
a kind of super or stackless or smart pickle module

▪ Content
▪ class Pickler

▪ subclass of pickle.Pickler
▪ mostly a plug in replacement of pickle.Pickler

▪ class SPickleTools:
▪ convenience functions for pickling and unpickling
▪ functions, that didn't fit elsewhere

▪ Availability
▪ http://pypi.python.org/pypi/sPickle Apache 2 License
▪ Documentation http://packages.python.org/sPickle
▪ Currently for Stackless Python 2.7 only

http://pypi.python.org/pypi/sPickle

 © 2011 science + computing ag

Page 9
Anselm Kruis | EuroPython 2011 | June 24th, 2011

Applications of Pickling

▪ Most important: Saving and restoring complex data.
▪ Already possible with standard CPython
▪ Mainstream, no longer advanced

▪ More interesting examples
▪ Checkpointing of a program

(A kind of asynchronous migration of a program)
▪ Remote Procedure Calls

(A kind of synchronous migration of a program)

 © 2011 science + computing ag

Page 10
Anselm Kruis | EuroPython 2011 | June 24th, 2011

Example 1: Checkpointing

▪ Definition (Wikipedia):
Checkpointing is a technique for inserting fault tolerance into computing

systems. It basically consists of storing a snapshot of the current
application state, and later on, use it for restarting the execution in
case of failure.

▪ Implementation plan: pickle state, data objects and code
▪ Serialise nearly every object, including the python frame stack and

some modules into a file.
▪ Restore everything from this file later on.

▪ Python source code is no longer required
▪ Can be on a different operating system

▪ Source: example1, included in the sPickle source archive

 © 2011 science + computing ag

Page 11
Anselm Kruis | EuroPython 2011 | June 24th, 2011

Checkpointing: Startup Code

import checkpointing
def long_running_function_with_checkpointing(checkpointSupport, *args, **keywords):
 print "At program start"
 ...
 while not isDone: # main loop
 ...
 isCmdResult, result = checkpointSupport.forkAndCheckpoint()
 if isCmdResult:
 # result is the pickle
 f = open(checkpointFile, "wb")
 f.write(result)
 f.close()
 else:
 # after restart
 ...

def main(argv):
 checkpointFile = "example1.pickle"
 ...
 from sPickle import SPickleTools
 # always serialize __main__, because the main used during a resume
 # operation is most likely a different module loaded from a different file
 pt = SPickleTools(serializeableModules=['__main__'])
 return checkpointing.runCheckpointable(pt.dumps,
 long_running_function_with_checkpointing,
 checkpointFile = checkpointFile,
 *argv)

 © 2011 science + computing ag

Page 12
Anselm Kruis | EuroPython 2011 | June 24th, 2011

Checkpointing: Module checkpointing.py

class _CheckpointSupport(object):
 def _taskletRun(self, trace, callable, args, keywords):
 raise sPickle.StacklessTaskletReturnValueException(
 callable(self, *args, **keywords))

 def _loop(self, tasklet, pickler):
 try:
 while True:
 tasklet.run()
 ...
 pickle = pickler((self, tasklet))
 ...
 tasklet.tempval = (True, sys.gettrace(), pickle)
 except sPickle.StacklessTaskletReturnValueException, e:
 return e.value

 def forkAndCheckpoint(self, cmd=CMD_CHECKPOINT):
 ...
 isCmdResult, trace, result = stackless.schedule(cmd)
 ...
 return (isCmdResult, result)

def runCheckpointable(pickler, callable, *args, **keywords):
 checkpointSupport = _CheckpointSupport()
 tasklet = stackless.tasklet(checkpointSupport._taskletRun)
 tasklet.setup(sys.gettrace(), callable, args, keywords)
 tasklet.tempval = None
 return checkpointSupport._loop(tasklet, pickler)

 © 2011 science + computing ag

Page 13
Anselm Kruis | EuroPython 2011 | June 24th, 2011

Checkpointing: Resume Code

import checkpointing

def main(argv):
 checkpointFile = "example1.pickle"
 ...
 # Resume the execution of the checkpoint
 # Note: This resume code does not define any functional logic.
 # You can also use the checkpointing module to resume example
 return checkpointing.resumeCheckpoint(open(checkpointFile, "rb").read(), *argv)

From checkpointing.py
def resumeCheckpoint(checkpoint, *args, **keywords):
 pt = sPickle.SPickleTools()
 checkpointSupport, tasklet = pt.loads(checkpoint)
 tasklet.tempval = (False, sys.gettrace(), (args, keywords))
 return checkpointSupport._loop(tasklet, pt.dumps)

 © 2011 science + computing ag

Page 14
Anselm Kruis | EuroPython 2011 | June 24th, 2011

Checkpointing

 Demo

 © 2011 science + computing ag

Page 15
Anselm Kruis | EuroPython 2011 | June 24th, 2011

Example 2: Remote compute slave

 We want to perform an operation on a remote compute slave
▪ On the slave, we have:

▪ ssh access
▪ Stackless Python and the RPyC package.

RPyC stands for Remote Python Calls, is available via PyPI and provides
symmetric remote procedure calls.

▪ sPickle simplifies RPyC remote procedure calls
▪ Creates the remote function and referenced objects
▪ Transparently pickles function result
▪ Handles resources: files, sockets and similar objects
▪ Simple application

def local_func(....)
 …
pt = sPickle.PickleTools()
remote_func = pt.remotemethod(connection, local_func)
result = remote_func(....)

 © 2011 science + computing ag

Page 16
Anselm Kruis | EuroPython 2011 | June 24th, 2011

Example 2: Algorithm

Result = collections.namedtuple("Result", "value error exception")
class ComputeTheAnswer(object):
 def __init__(self, param1, param2):
 self.param1 = param1
 self.param2 = param2
 self.result = self.error = self.exception = None

 def compute(self):
 try:
 self.result = self.param1 + self.param2
 if int(self.result) != 42:
 self.error = "Result is inconsistent with "+
 "previous calculations!"
 except Exception, e:
 self.error = "Hey, you asked the wrong question. "+
 "Try again with different parameters!"
 self.exception = e

 def getResult(self):
 return Result(self.result, self.error, self.exception)

 © 2011 science + computing ag

Page 17
Anselm Kruis | EuroPython 2011 | June 24th, 2011

Example 2: Remote Procedure Call

 # the directory sPickle/examples is not in sys.path, therefore
 # it is not possible to import modules from this directory.
 # Therefore ask the pickler to serialise those modules.
 pt = sPickle.SPickleTools(serializeableModules=["sPickle/examples"])

 remoteLogger = logging.getLogger("remoteLogger")
 def function(param1, param2):
 remoteLogger.info("Starting function with parameters: %r, %r",
 param1, param2)
 algorithm = ComputeTheAnswer(param1, param2)
 remoteLogger.info("Computing ...")
 algorithm.compute()
 remoteLogger.info("Computing is done.")
 return algorithm.getResult()
 remote_function = pt.remotemethod(connection, function)

 # Lets perform a few computations
 r = remote_function(22, 20)
 print "Result: ", r
 r = remote_function("4","1")
 print "Result: ", r
 r = remote_function("42",None)
 print "Result: ", r

 © 2011 science + computing ag

Page 18
Anselm Kruis | EuroPython 2011 | June 24th, 2011

Example 2

 Demo

 © 2011 science + computing ag

Page 19
Anselm Kruis | EuroPython 2011 | June 24th, 2011

 The implementation of sPickle

 © 2011 science + computing ag

Page 20
Anselm Kruis | EuroPython 2011 | June 24th, 2011

 The Problem with the __dict__
▪ A module object has the following attributes:

▪ __dict__: type: dict, read-only
▪ __dict__.keys()

▪ Usually there are references to both, the module object and its __dict__

Here: function.im_globals is mod.__dict__
▪ If we recreate an object structure, we must create the module objects first,

because we can't set the __dict__ attribute.
▪ Problem: If we inspect a dictionary, it might be the __dict__ of a module.

▪ How to decide?

Pickling Modules

import mod # mod is now a module object
from mod import function # a function

 © 2011 science + computing ag

Page 21
Anselm Kruis | EuroPython 2011 | June 24th, 2011

Pickling Modules II

 How to find the module for a given dictionary?
▪ Not reliable:

▪ Use the content of the dictionary and apply heuristics.
▪ Usually we are able to guess the right module name and locate the module

object via sys.modules
▪ Complicated, very unreliable

▪ Test all modules in sys.modules
▪ still unreliable, if we use reload()

▪ OK: Use backtracking
▪ While pickling objects, keep a reference to every dictionary and if we later

encounter a module for dictionary, back up and pickle the module first.
▪ Implemented in method dict_checkpoint using Exceptions
▪ This implementation fits into the existing code, but the performance is bad
▪ A better implementation needs a two pass Pickler.

 © 2011 science + computing ag

Page 22
Anselm Kruis | EuroPython 2011 | June 24th, 2011

Pickling Modules IV

 Module Life Cycle or How do we unpickle the module “__main__”?
Obviously we have a name collision

Module name collisions provide three problems
▪ sys.modules can hold only one module per name
▪ During unpickling the entry in sys.modules might be the wrong one.
▪ How to keep a module alive after unpickling, if we can't store a reference in

sys.modules?
Remember, shutdown of a module clears the dictionary of the module.

My solution
▪ in sys.modules replace the original module by the new module during unpickling.
▪ In case of a collision, restore the old state of sys.modules after unpickling and

store a reference to the new module in sys.sPicklePreservedModules

 © 2011 science + computing ag

Page 23
Anselm Kruis | EuroPython 2011 | June 24th, 2011

Pickling Classes / Types

 Problems
▪ Many types are built in / defined in native code

▪ sPickle knows about a lot of them, but not all
▪ the types module is incomplete

▪ Using metaclasses, you can build types, that are hard to inspect.

sPickle
▪ currently looks at the __dict__ attribute of a class/type.
▪ No special code for metaclasses
▪ Works for me, but not perfect.
▪ Test cases and patches are welcome

 © 2011 science + computing ag

Page 24
Anselm Kruis | EuroPython 2011 | June 24th, 2011

Pickling Classes / Types II

 How should the Pickler encode the creation of a class?
members={ … # add all members __init__, ….
}
cls = type(name, bases, members)

 or
cls = type(name, bases, {})
for k,v in members.items():

 setattr(cls, k, v)

 For most attributes, either method is fine. But some attributes are processed by
the metaclass:
▪ Do not set at all: __dict__, __class__, members of type DictProxyType,

GetSetDescriptorType, MemberDescriptorType
▪ Set in the constructor: __slots__, __doc__, __module__
▪ Set via setattr(): all other

 © 2011 science + computing ag

Page 25
Anselm Kruis | EuroPython 2011 | June 24th, 2011

Special Objects obj is ...

 sPickle contains special code for:
▪ all types from the module types
▪ WRAPPER_DESCRIPTOR_TYPE
▪ METHOD_DESCRIPTOR_TYPE
▪ METHOD_WRAPPER_TYPE
▪ LISTITERATOR_TYPE
▪ TUPLEITERATOR_TYPE
▪ RANGEITERATOR_TYPE
▪ SETITERATOR_TYPE
▪ sys.stdout
▪ sys.stderr
▪ sys.stdin
▪ sys.__stdout__
▪ sys.__stderr__
▪ sys.__stdin__

 © 2011 science + computing ag

Page 26
Anselm Kruis | EuroPython 2011 | June 24th, 2011

Special Types isinstance(obj, ...)

 sPickle contains special code for objects of type:
▪ type(object.__new__) and __name__ in ('__new__', '__subclasshook__')
▪ types.BuiltinMethodType
▪ thread.LockType
▪ types.FileType
▪ socket.SocketType
▪ SOCKET_PAIR_TYPE
▪ WRAPPER_DESCRIPTOR_TYPE
▪ METHOD_DESCRIPTOR_TYPE
▪ staticmethod
▪ classmethod
▪ property
▪ operator.itemgetter
▪ operator.attrgetter

 © 2011 science + computing ag

Page 27
Anselm Kruis | EuroPython 2011 | June 24th, 2011

Other specialities

▪ Handling of trace functions
If a frame has a trace function (f_trace attribute of a frame),

reconstruct this function using sys.gettrace

▪ Special functions from sys
The sys module contains two entries for some functions:

▪ excepthook, __excepthook__
▪ displayhook, __displayhook__

Test both versions, if looking for a function definition

 © 2011 science + computing ag

Page 28
Anselm Kruis | EuroPython 2011 | June 24th, 2011

Further Development of sPickle

▪ Add public GIT repository!!!

▪ We use sPickle module in a commercial product

▪ We plan to provide bug fixes

▪ Sorry, no plans for a Python 3 port

▪ sPickle is licensed under the Apache License, because this
license is suitable for contributions to Python.

▪ Any chance to get some parts into Stackless or plain CPython?

 © 2011 science + computing ag

Page 29
Anselm Kruis | EuroPython 2011 | June 24th, 2011

Conclusion

▪ It is indeed possible to extend the Pickler

▪ The Python standard library does not care very much about pickling

▪ sPickle
▪ is still experimental

▪ many special cases are rely on undocumented implementation details of
Python

▪ currently only for Stackless Python 2.7

▪ Most features of sPickle could be integrated into standard C-Python

Many thanks for your kind attention.

 Anselm Kruis
 science + computing ag
 www.science-computing.de

 Telefon +49-7071-9457-0
 info@science-computing.de

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Schlussfolie

