
3D visualization in an OpenStack cloud: a tasteful recipe

Carlo Impagliazzo, Muriel Cabianca
CRS4 - Center for Advanced Studies, Research and Development in Sardinia

We present a method that allows users to capitalize on the availability of cloud computing resources to visualize
complex 3D graphical models on simple – even mobile – thin clients. The portability and form factor of thin clients
makes them ideal companions in meetings and work locations away from the traditional desk, while being well
suited for mobile model visualization. Unfortunately, to achieve their mobility, these devices sacrifice computing
power, thus limiting the complexity of models that can be rendered on board. We address this problem by
integrating a cloud-based rendering infrastructure with a 3D visualization system on thin clients, allowing the
visualization platform to take advantage of remote graphics acceleration, while optimizing the resources and
sharing them with other HPC tasks.

{carlo.imp,muriel.c}@crs4.it

 How

 Scenario

The system consists of three main components:

* a web interface that manages application sessions;
* a custom orchestrator that manages cloud-based
resources and virtual application instances;
* a visualization front-end that runs on clients.

The web-based front-end provides web services to
access accelerated applications that run in the data
center. It also allows sessions to be shared among
users.

The orchestrator provides an abstraction layer to
manage instances of application appliances, also
provides the frontend with the parameters to
communicate with the applications running on them. To
manage these virtual computing resources, the
orchestrator uses the OpenStack cloud computing
platform. To acquire hardware resources on which to
instantiate the virtual machines, OpenStack negotiates
with GridEngine through a custom scheduler
extension.

All the custom API layers have been developed using
the Flask microframework and SQLAlchemy to
interact with the DB, while Python was used to
implement the middleware.

The system also includes a communication and
synchronization layer between its three main
components.

The application used to test the infrastructure consists
in performing a multiple run of a regional weather
forecast model. A fast fluid dynamics mass-consistent
flow model (based on OpenFOAM) produces a highly
resolved wind in a smaller and finer domain. A
ParaView's screenshot, displaying some downscaled
3D wind streamlines at grid resolution of 20m, is
shown in figure (B). With those high resolution weather
conditions it is possible to drive a forest fire simulation
module and evaluate fire evolution scenarios for that
domain. Fig (A)

Fig B

Fig A

The aim of the middleware is to maintain a
constant number of VMs per recipe (a set of
resource specifications for an application).

Through recipes is possible to specify the flavor
and how many VMs is desirable to keep alive.
Within the Middleware two cores work to
provide facilities: Orchestrator, Cistern.

As its name implies, the orchestrator coordinates
virtual resources to ensure that session requests
are satisfied as quickly and efficiently as possible,
while hiding details from the upper layers. The
use of Libcloud to merge different API dialects
allows it to support different cloud providers. In
our server farm, we ran our tests with
OpenStack. Flask has been used to provide a
practical access and management point as well as
ensure reliability.

Cistern is the codename of the DB interface
based on Flask. Besides acting as a web service
interface, it shares database models with two
independent daemons, Loops and Cook. The
former communicates with the orchestrator to
keep specs synced on the DB, while the latter
synchronizes user information between the
orchestrator and the DB. Depending on the
recipe, Cook also calls orchestration routines to
launch new VMs.

 Flow
In our typical scenario, resources are shared
between OpenStack and other HPC
applications, so we need to use an additional
scheduler to reserve physical machines for
OpenStack.

When a new request comes from the
orchestrator, OpenStack checks if it has
enough resources to launch the requested VM.
If it doesn't, it submits a special job to Grid
Engine and starts a monitor process. Before
submitting the job, OpenStack maps the
resource needed to launch the VM to the
resource schema used by Grid Engine, to ensure
that the physical machine is able to host the
VM.

Grid Engine launches a "reservation job" in the
first machine that fits the requested VM specs;
the monitor process becomes aware of which
machine the job is running on, configures the
OpenStack environment accordingly and
prevents other jobs to interfere with it.

Now OpenStack can launch the VM and all
those resources in the machine are dedicated to
OpenStack VMs.

 Schema

When the last VM stops running, the job kills
itself, and the OpenStack monitor marks the
server as unavailable.

Courtesy of CRS4's E&E Sector

 Purpose

PIA - Pacchetti Integrati di Agevolazioni "Industria, Artigianato e Servizi" (Annualita' 2010)
Programmazione Unitaria 2007/2013

P.O. FESR 2007/2013

	Pagina 1

